Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year
    1.614
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 80 Scimago H
    index 80
ANGEO | Articles | Volume 37, issue 1
Ann. Geophys., 37, 25-36, 2019
https://doi.org/10.5194/angeo-37-25-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Advanced Global Navigation Satellite Systems tropospheric...

Ann. Geophys., 37, 25-36, 2019
https://doi.org/10.5194/angeo-37-25-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Regular paper 15 Jan 2019

Regular paper | 15 Jan 2019

Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong

Zhaohui Xiong et al.
Related authors  
An improved pixel-based water vapor tomography model
Yibin Yao, Linyang Xin, and Qingzhi Zhao
Ann. Geophys., 37, 89-100, https://doi.org/10.5194/angeo-37-89-2019,https://doi.org/10.5194/angeo-37-89-2019, 2019
Short summary
An empirical zenith wet delay correction model using piecewise height functions
YiBin Yao and YuFeng Hu
Ann. Geophys., 36, 1507-1519, https://doi.org/10.5194/angeo-36-1507-2018,https://doi.org/10.5194/angeo-36-1507-2018, 2018
An optimal tropospheric tomography approach with the support of an auxiliary area
Qingzhi Zhao, Yibin Yao, Wanqiang Yao, and Pengfei Xia
Ann. Geophys., 36, 1037-1046, https://doi.org/10.5194/angeo-36-1037-2018,https://doi.org/10.5194/angeo-36-1037-2018, 2018
Short summary
Capturing the signature of heavy rainfall events using the 2-d-/4-d water vapour information derived from GNSS measurement in Hong Kong
Qingzhi Zhao, Yibin Yao, and Wanqiang Yao
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-76,https://doi.org/10.5194/angeo-2018-76, 2018
Manuscript not accepted for further review
Short summary
Establishment of a regional precipitable water vapor model based on the combination of GNSS and ECMWF data
Yibin Yao, Xingyu Xu, and Yufeng Hu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-227,https://doi.org/10.5194/amt-2018-227, 2018
Revised manuscript not accepted
Related subject area  
Subject: Terrestrial atmosphere and its relation to the sun | Keywords: Modelling of the atmosphere
An empirical model of the thermospheric mass density derived from CHAMP satellite
Chao Xiong, Hermann Lühr, Michael Schmidt, Mathis Bloßfeld, and Sergei Rudenko
Ann. Geophys., 36, 1141-1152, https://doi.org/10.5194/angeo-36-1141-2018,https://doi.org/10.5194/angeo-36-1141-2018, 2018
Cited articles  
Adams, K., Fernandes, S., and Maia, F.: GNSS Precipitable Water Vapor from an Amazonian Rain Forest Flux Tower, J. Atmos. Ocean. Tech., 28, 1192–1198, https://doi.org/10.1175/jtech-d-11-00082.1, 2011. 
Adavi, Z. and Mashhadi-Hossainali, M.: 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran, Meteorol. Atmos. Phys., 126, 193–205, https://doi.org/10.1007/s00703-014-0342-4, 2014. 
Altshuler, E. E.: Tropospheric range-error corrections for the Global Positioning System, IEEE T. Antenn. Propag., 46, 643–649, https://doi.org/10.1109/8.668906, 2002. 
Altuntac, E.: Quasi-Newton Approach for an Atmospheric Tomography Problem, eprint arXiv:1511.08022, available at: https://arxiv.org/pdf/1511.08022.pdf (last access: 4 May 2018), 2015. 
Askne, J. and Nordius, H.: Estimation of Tropospheric Delay for Microwaves from Surface Weather Data, Radio Sci., 22, 379–386, https://doi.org/10.1029/rs022i003p00379, 1987. 
Publications Copernicus
Download
Short summary
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR) is conducted in HK during a wet period and a dry period. The results show that both of them can retrieve good WR. In most of the cases, the WRFDA output outperforms the tomographic WR, but the tomographic WR is better than the WRFDA output in the lower troposphere in the dry period. By assimilating better tomographic WR in the lower troposphere into the WRFDA, we slightly improve the retrieved WR.
A comparison between the GNSS tomography technique and WRFDA in retrieving wet refractivity (WR)...
Citation