Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 36, issue 3 | Copyright
Ann. Geophys., 36, 891-898, 2018
https://doi.org/10.5194/angeo-36-891-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Regular paper 20 Jun 2018

Regular paper | 20 Jun 2018

Differentiating diffuse auroras based on phenomenology

Eric Grono and Eric Donovan Eric Grono and Eric Donovan
  • University of Calgary, Calgary, Alberta, Canada

Abstract. There is mounting evidence which suggests that pulsating auroral patches often move with convection. This study is an initial step at identifying the differences between patches that move with convection and those that do not. While many properties of pulsating patches vary, here we outline criteria for separating pulsating auroral patches into three categories based on two properties: their structural stability and the spatial extent of their pulsations. Patchy aurora is characterized by stable structures whose pulsations are limited to small regions. Patchy pulsating aurora consists of stable patches whose pulsations are far less subtle and occur throughout much of their area. Amorphous pulsating auroral structures are unstable – very rapidly evolving – and can pulsate over their entire area. The speed with which amorphous pulsating aurora evolves makes their motion difficult to ascertain and seems unrelated to the E × B drifting of cold, equatorial plasma.

Download & links
Publications Copernicus
Download
Short summary
The solar wind reshapes Earth's magnetic field to create our magnetosphere and powers many dynamic processes in our plasma-filled environment, some of which produce the aurora. Networks of ground-based all-sky cameras are valuable tools that offer a large field-of-view with which to study the aurora. Using sequences of auroral images, this study defines criteria for differentiating an important type of aurora whose subcategories are often conflated.
The solar wind reshapes Earth's magnetic field to create our magnetosphere and powers many...
Citation
Share