Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
ANGEO | Articles | Volume 36, issue 3
Ann. Geophys., 36, 825–830, 2018
https://doi.org/10.5194/angeo-36-825-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: Dynamics and interaction of processes in the Earth and its...

Ann. Geophys., 36, 825–830, 2018
https://doi.org/10.5194/angeo-36-825-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

ANGEO Communicates 06 Jun 2018

ANGEO Communicates | 06 Jun 2018

Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: meteor radar data and simulations

Dimitry Pokhotelov et al.
Related authors  
Statistical climatology of mid-latitude mesospheric summer echoes characterised by OSWIN (Ostsee-Wind) radar observations
Dimitry Pokhotelov, Gunter Stober, and Jorge Luis Chau
Atmos. Chem. Phys., 19, 5251–5258, https://doi.org/10.5194/acp-19-5251-2019,https://doi.org/10.5194/acp-19-5251-2019, 2019
Short summary
The influence of solar wind variability on magnetospheric ULF wave power
D. Pokhotelov, I. J. Rae, K. R. Murphy, and I. R. Mann
Ann. Geophys., 33, 697–701, https://doi.org/10.5194/angeo-33-697-2015,https://doi.org/10.5194/angeo-33-697-2015, 2015
Short summary
TID characterised using joint effort of incoherent scatter radar and GPS
M. van de Kamp, D. Pokhotelov, and K. Kauristie
Ann. Geophys., 32, 1511–1532, https://doi.org/10.5194/angeo-32-1511-2014,https://doi.org/10.5194/angeo-32-1511-2014, 2014
Ion distributions upstream and downstream of the Earth's bow shock: first results from Vlasiator
D. Pokhotelov, S. von Alfthan, Y. Kempf, R. Vainio, H. E. J. Koskinen, and M. Palmroth
Ann. Geophys., 31, 2207–2212, https://doi.org/10.5194/angeo-31-2207-2013,https://doi.org/10.5194/angeo-31-2207-2013, 2013
Related subject area  
Subject: Earth's ionosphere & aeronomy | Keywords: Waves and tides
Impact of gravity wave drag on the thermospheric circulation: implementation of a nonlinear gravity wave parameterization in a whole-atmosphere model
Yasunobu Miyoshi and Erdal Yiğit
Ann. Geophys., 37, 955–969, https://doi.org/10.5194/angeo-37-955-2019,https://doi.org/10.5194/angeo-37-955-2019, 2019
Short summary
Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019,https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Climatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes
Sven Wilhelm, Gunter Stober, and Peter Brown
Ann. Geophys., 37, 851–875, https://doi.org/10.5194/angeo-37-851-2019,https://doi.org/10.5194/angeo-37-851-2019, 2019
Short summary
Comparison of gravity wave propagation directions observed by mesospheric airglow imaging at three different latitudes using the M-transform
Septi Perwitasari, Takuji Nakamura, Masaru Kogure, Yoshihiro Tomikawa, Mitsumu K. Ejiri, and Kazuo Shiokawa
Ann. Geophys., 36, 1597–1605, https://doi.org/10.5194/angeo-36-1597-2018,https://doi.org/10.5194/angeo-36-1597-2018, 2018
Short summary
Cited articles  
Achatz, U., Grieger, N., and Schmidt, H.: Mechanisms controlling the diurnal solar tide: Analysis using a GCM and a linear model, J. Geophys. Res., 113, A08303, https://doi.org/10.1029/2007JA012967, 2008. a
Becker, E.: Mean-flow effects of thermal tides in the mesosphere and lower thermosphere, J. Atmos. Sci., 74, 2043–2062, https://doi.org/10.1175/JAS-D-16-0194.1, 2017. a, b, c, d
Becker, E. and Vadas, S. L.: Secondary gravity waves in the winter mesosphere: Results from a high-resolution global circulation model, J. Geophys. Res.-Atmos., 123, 2605–2627, https://doi.org/10.1002/2017jd027460, 2018. a
Buriti, R. A., Hocking, W. K., Batista, P. P., Medeiros, A. F., and Clemesha, B. R.: Observations of equatorial mesospheric winds over Cariri (7.4 S) by a meteor radar and comparison with existing models, Ann. Geophys., 26, 485–497, https://doi.org/10.5194/angeo-26-485-2008, 2008. a
Davis, R. N., Du, J., Smith, A. K., Ward, W. E., and Mitchell, N. J.: The diurnal and semidiurnal tides over Ascension Island (8 S, 14 W) and their interaction with the stratospheric quasi-biennial oscillation: studies with meteor radar, eCMAM and WACCM, Atmos. Chem. Phys., 13, 9543–9564, https://doi.org/10.5194/acp-13-9543-2013, 2013. a, b
Publications Copernicus
Download
Short summary
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to the upper atmosphere and ionosphere playing an important role in the vertical coupling. Ground radar measurements of the seasonal variability of tides are compared with global numerical simulations. The agreement with radar data and limitations of the numerical model are discussed. The work represents a first step in modelling the impact of tidal dynamics on the upper atmosphere and ionosphere.
Atmospheric tides are produced by solar heating of the lower atmosphere. The tides propagate to...
Citation