Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Ann. Geophys., 36, 473-487, 2018
https://doi.org/10.5194/angeo-36-473-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Regular paper
22 Mar 2018
Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator
Dustin A. Hickey1, Carlos R. Martinis1, Michael Mendillo1, Jeffrey Baumgardner1, Joei Wroten1, and Marco Milla2 1Center for Space Physics, Boston University, Boston, Massachusetts, USA
2Jicamarca Radio Observatory, Lima, Peru
Abstract. In March 2014 an all-sky imager (ASI) was installed at the Jicamarca Radio Observatory (11.95° S, 76.87° W; 0.3° S MLAT). We present results of equatorial spread F (ESF) characteristics observed at Jicamarca and at low latitudes. Optical 6300 and 7774 Å airglow observations from the Jicamarca ASI are compared with other collocated instruments and with ASIs at El Leoncito, Argentina (31.8° S, 69.3° W; 19.8° S MLAT), and Villa de Leyva, Colombia (5.6° N, 73.52° W; 16.4° N MLAT). We use Jicamarca radar data, in incoherent and coherent modes, to obtain plasma parameters and detect echoes from irregularities. We find that ESF depletions tend to appear in groups with a group-to-group separation around 400–500 km and within-group separation around 50–100 km. We combine data from the three ASIs to investigate the conditions at Jicamarca that could lead to the development of high-altitude, or topside, plumes. We compare zonal winds, obtained from a Fabry–Pérot interferometer, with plasma drifts inferred from the zonal motion of plasma depletions. In addition to the ESF studies we also investigate the midnight temperature maximum and its effects at higher latitudes, visible as a brightness wave at El Leoncito. The ASI at Jicamarca along with collocated and low-latitude instruments provide a clear two-dimensional view of spatial and temporal evolution of ionospheric phenomena at equatorial and low latitudes that helps to explain the dynamics and evolution of equatorial ionospheric/thermospheric processes.
Citation: Hickey, D. A., Martinis, C. R., Mendillo, M., Baumgardner, J., Wroten, J., and Milla, M.: Simultaneous 6300 Å airglow and radar observations of ionospheric irregularities and dynamics at the geomagnetic equator, Ann. Geophys., 36, 473-487, https://doi.org/10.5194/angeo-36-473-2018, 2018.
Publications Copernicus
Download
Short summary
We present observations of the Earth's upper atmosphere (ionosphere and thermosphere) near the Equator. Instruments such as cameras and radar systems are used to measure the characteristics of the this region and compare the different observations. One focus of the paper is on structured regions of low density and we find patterns in its development along with other new observations. We also show results of a local increase in temperature near midnight and investigate its extent and evolution.
We present observations of the Earth's upper atmosphere (ionosphere and thermosphere) near the...
Share