Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 36, issue 2 | Copyright
Ann. Geophys., 36, 373-379, 2018
https://doi.org/10.5194/angeo-36-373-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Regular paper 15 Mar 2018

Regular paper | 15 Mar 2018

Tripolar electric field Structure in guide field magnetic reconnection

Song Fu1, Shiyong Huang1, Meng Zhou2, Binbin Ni1, and Xiaohua Deng2 Song Fu et al.
  • 1School of Electronic Information, Wuhan University, 430072 Wuhan, China
  • 2Institute of Space Science and Technology, Nanchang University, 330031 Nanchang, China

Abstract. It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

Publications Copernicus
Download
Short summary
It has been shown that guide fields substantially modify the structure of reconnection layers. In this paper, we studied the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field.
It has been shown that guide fields substantially modify the structure of reconnection layers....
Citation
Share