Ando, H., Imamura, T., and Tsuda, T.: Vertical wavenumber spectra
of gravity waves in the Martian atmosphere obtained from Mars Global
Surveyor radio occultation data, J. Atmos. Sci., 69,
2906–2912, https://doi.org/10.1175/JAS-D-11-0339.1, 2012. a
Aoki, S., Sato, Y., Giuranna, M., Wolkenberg, P., Sato, T., Nakagawa,
H., and Kasaba, Y.: Mesospheric CO2 ice clouds on Mars observed by
Planetary Fourier Spectrometer onboard Mars Express,
Icarus, 302, 175–190,
https://doi.org/10.1016/j.icarus.2017.10.047, 2018. a
Brecht, A., Bougher, S. W., and Yiğit, E.: Parameterizing
gravity waves and understanding their impacts on venus' upper atmosphere, in
52nd ESLAB Symposium, Noordwijk, Netherlands, May, 2018. a
Clancy, R. T. and Sandor, B. J.: CO2 ice clouds in the
upper atmosphere of Mars, Geophys. Res. Lett., 25,
489–492, 1998. a, b
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., and
Smith, M. D.: Mars equatorial mesospheric clouds: Global occurrence and
physical properties from mars global surveyor thermal emission spectrometer
and mars orbiter camera limb observations, J. Geophys. Res.,
112, E04004,
https://doi.org/10.1029/2006JE002805, 2007. a, b
Colaprete, A., Barnes, J. R., Haberle, R. M., and Montmessin, F.:
CO2 clouds, CAPE and convection on Mars: Observations and general
circulation modeling, Planet. Space Sci., 56, 150–180,
https://doi.org/10.1016/j.pss.2007.08.010, 2008. a, b
England, S. L., Liu, G., Yiğit, E., Mahaffy, P. R., Elrod, M.,
Benna, M., Nakagawa, H., Terada, N., and Jakosky, B.: MAVEN NGIMS
observations of atmospheric gravity waves in the Martian thermosphere,
J. Geophys. Res.-Space, 122, 2310–2335, https://doi.org/10.1002/2016JA023475,
2017. a
Fritts, D. C. and Alexander, M. J.: Gravity wave dynamics and
effects in the middle atmosphere, Rev. Geophys., 41,
1003, https://doi.org/10.1029/2001RG000106, 2003. a
Fritts, D. C., Wang, L., and Tolson, R. H.: Mean and gravity wave
structures and variability in the Mars upper atmosphere inferred from
Mars global surveyor and Mars odyssey aerobraking densities, J.
Geophys. Res., 111, A12304, https://doi.org/10.1029/2006JA011897, 2006. a
Garcia, R. R. and Solomon, S.: The effect of breaking gravity
waves on the dynamics and chemical composition of the mesosphere and lower
thermosphere, J. Geophys. Res., 90, 3850–3868,
1985. a
Glandorf, D. L., Colaprete, A., Tolbert, M. A., and Toon, O. B.:
CO2 snow on Mars and early Earth: Experimental constraints,
Icarus, 160, 66–72, 2002. a, b
González-Galindo, F., Määtänen, A., Forget, F., and Spiga, A.:
The martian mesosphere as revealed by CO2 cloud observations and
general circulation modeling, Icarus, 216, 10–22,
https://doi.org/10.1016/j.icarus.2011.08.006, 2011. a, b, c
Graf, J. E., Zurek, R. W., Eisen, H. J., Johnston, M., Jai, B., and
DePaula, R.: The mars reconnaissance orbiter mission, Acta
Astronaut., 57, 566–578,
https://doi.org/10.1016/j.actaastro.2005.03.043, 2005. a
Hartogh, P., Medvedev, A. S., Kuroda, T., Saito, R., Villanueva, G.,
Feofilov, A. G., Kutepov, A. A., and Berger, U.: Description and climatology
of a new general circulation model of the Martian atmosphere, J.
Geophys. Res., 110, E11008, https://doi.org/10.1029/2005JE002498, 2005. a
Hartogh, P., Medvedev, A. S., and Jarchow, C.: Middle atmosphere
polar warmings on mars: simulations and study on the validation with
sub-millimeter observations, Planet. Space Sci., 55,
1103–1112, 2007. a
Hickey, M. P. and Cole, K. D.: A numerical model for gravity
wave dissipation in the thermosphere, J. Atmos. Terr. Phys.,
50, 689–697, 1988. a
Jensen, E. J. and Thomas, G. E.: Numerical simulations of the
effects of gravity waves on noctilucent clouds, J. Geophys. Res.-Atmos., 99,
3421–3430, https://doi.org/10.1029/93JD01736, 1994. a
Kuroda, T., Medvedev, A. S., Kasaba, Y., and Hartogh, P.: Carbon
dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter
polar atmosphere of mars, Geophys. Res. Lett., 40, 1–5,
https://doi.org/10.1002/grl.50326, 2013. a
Kuroda, T., Medvedev, A. S., Yiğit, E., and Hartogh, P.: A
global view of gravity waves in the martian atmosphere inferred from a
high-resolution general circulation model, Geophys. Res.
Lett., 42, 9213–9222, https://doi.org/10.1002/2015GL066332, 2015. a, b
Kuroda, T., Medvedev, A. S., Yiğit, E., and Hartogh, P.:
Global distribution of gravity wave sources and fields in the martian
atmosphere during equinox and solstice inferred from a high-resolution
general circulation model, J. Atmos. Sci., 73, 4895–4909,
https://doi.org/10.1175/JAS-D-16-0142.1, 2016. a, b
Listowski, C., Määtänen, A., Montmessin, F., Spiga, A., and
Lefévre, F.: Modeling the microphysics of CO2 ice clouds within
wave-induced cold pockets in the martian mesosphere, Icarus,
237, 239–261, https://doi.org/10.1016/j.icarus.2014.04.022, 2014. a
Määttänen, A., Montmessin, F., Gondet, B., Scholten, F.,
Hoffmann, H., González-Galindo, F., Spiga, A., Forget, F., Hauber,
E., Neukum, G., Bibring, J.-P., and Bertaux, J.-L.: Mapping the mesospheric
CO2 clouds on mars: MEx/OMEGA and MEx/HRSC observations and challenges
for atmospheric models, Icarus, 209, 452–469,
https://doi.org/10.1016/j.icarus.2010.05.017, 2010. a, b
Määttänen, A., Pérot, K., Montmessin, F., and Houchecorne, A.:
Mesopheric clouds on mars and on earth, in: Comparative
Climatology of Terretrial Planets, edited by: Mackwell, S. J., 393–413,
Univ. of Arizona, 2013. a, b
McConnochie, T., Savransky III, J. B. D., Wolff, M., Toigo, A., Wang,
H., Richardson, M., and Christensen, P.: Themis-vis observations of clouds
in the martian mesosphere: Altitudes, wind speeds, and decameter-scale
morphology, Icarus, 210, 545–565,
https://doi.org/10.1016/j.icarus.2010.07.021, 2010. a
Medvedev, A. S. and Hartogh P.: Winter polar warmings and the
meridional transport on Mars simulated with a general circulation model,
Icarus, 186, 97–110, 2007. a
Medvedev, A. S. and Yiğit, E.: Thermal effects of internal
gravity waves in the Martian upper atmosphere, Geophys. Res.
Lett., 39, L05201, https://doi.org/10.1029/2012GL050852, 2012. a
Medvedev, A. S., Yiğit, E., Hartogh, P., and Becker, E.: Influence
of gravity waves on the Martian atmosphere:
General circulation modeling, J. Geophys. Res., 116,
E10004, https://doi.org/10.1029/2011JE003848, 2011a. a, b, c, d
Medvedev, A. S., Yiğit, E., and Hartogh, P.:
Estimates of gravity wave drag on Mars: indication of a possible lower
thermosphere wind reversal, Icarus, 211, 909–912,
https://doi.org/10.1016/j.icarus.2010.10.013, 2011b. a, b, c, d
Medvedev, A. S., Yiğit, E., Kuroda, T., and Hartogh, P.:
General circulation modeling of the martian upper atmosphere during global
dust storms, J. Geophys. Res.-Planets, 118, 1–13,
https://doi.org/10.1002/jgre.20163, 2013. a
Medvedev, A. S., González-Galindo, F., Yiğit, E., Feofilov, A. G.,
Forget, F., and Hartogh, P.: Cooling of the martian thermosphere by
CO2 radiation and gravity waves: An intercomparison study with two
general circulation models, J. Geophys. Res.-Planets, 120, 913–927,
https://doi.org/10.1002/2015JE004802, 2015. a, b, c, d
Medvedev, A. S., Nakagawa, H., Mockel, C., Yiğit, E., Kuroda, T.,
Hartogh, P., Terada, K., Terada, N., Seki, K., Schneider, N. M., Jain, S. K.,
Evans, J. S., Deighan, J. I., McClintock, W. E., Lo, D., and Jakosky, B. M.:
Comparison of the martian thermospheric density and temperature from
iuvs/maven data and general circulation modeling, Geophys. Res.
Lett., 43, 3095–3104, https://doi.org/10.1002/2016GL068388, 2016. a
Mischna, M. A., Kasting, J. F., Pavlov, A., and Freedman, R.:
Influence of carbon dioxide clouds on early martian climate, Icarus,
145, 546–554, https://doi.org/10.1006/icar.2000.6380, 2000. a
Miyoshi, Y., Fujiwara, H., Jin, H., and Shinagawa, H.: A global
view of gravity waves in the thermosphere simulated by a general circulation
model, J. Geophys. Res.-Space, 119, 5807–5820,
https://doi.org/10.1002/2014JA019848, 2014. a
Nair, H., Allen, M., Anbar, A. D., Yung, Y. L., and Clancy, R. T.:
A photochemical model of the martian atmosphere, Icarus,
111, 124–150, 1994. a
Parish, H. F., Schubert, G., Hickey, M., and Walterscheid, R. L.:
Propagation of tropospheric gravity waves into the upper atmosphere of
Mars, Icarus, 203, 28–37, 2009. a
Rapp, M., Lübken, F.-J., Müllemann, A., Thomas, G. E., and
Jensen, E. J.: Small-scale temperature variations in the vicinity of NLC:
Experimental and model results, J. Geophys. Res.-Atmos.,
107, AAC 11–1–AAC 11–20, https://doi.org/10.1029/2001JD001241, 2002. a
Schofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S.,
Magalhães, J. A., Murphy, J. R., Seiff, A., and Wilson, G.: The Mars
Pathfinder Atmospheric Structure Investigation/Meteorology
(asi/met) Experiment, Science, 278, 1752–1758,
https://doi.org/10.1126/science.278.5344.1752, 1997. a
Sefton-Nash, E., Teanby, N. A., Montabone, L., Irwin, P. G. J., Hurley,
J.,
and Calcutt, S. B.: Climatology and first-order composition estimates
of mesospheric clouds from mars climate sounder limb spectra,
Icarus, 222, 342–356, https://doi.org/10.1016/j.icarus.2012.11.012, 2013. a, b, c, d, e, f, g, h, i, j, k
Siskind, D. E. and Stevens, M.: A radiative feedback from an
interactive polar mesospheric cloud parameterization in a two dimensional
model, Adv. Space Res., 38, 2383–2387,
https://doi.org/10.1016/j.asr.2005.03.094, 2006. a
Smith, M. D.: Spacecraft observations of the martian
atmosphere, Annu. Rev. Earth Pl. Sc., 36, 191–219, 2008. a
Spiga, A., González-Galindo, F., López-Valverde, M.-A., and
Forget, F.: Gravity waves, cold pockets and CO2 clouds in the
martian mesosphere, Geophys. Res. Lett., 39, L02201,
https://doi.org/10.1029/2011GL050343, 2012. a
Stevens, M. H., Siskind, D. E., Evans, J. S., Jain, S. K.,
Schneider, N. M., Deighan, J., Stewart, A. I. F., Crismani, M., Stiepen, A.,
Chaffin, M. S., McClintock, W. E., Holsclaw, G. M., Lefèvre, F., Lo, D. Y., Clarke, J. T., Montmessin, F., and
Jakosky, B. M.: Martian mesospheric cloud observations by IUVS on
MAVEN: Thermal tides coupled to the upper atmosphere, Geophys. Res.
Lett., 44, 4709–4715, https://doi.org/10.1002/2017GL072717, 2017. a
Vincendon, M., Pilorget, C., Gondet, B., Murchie, S., and Bibring,
J.-P.: New near-IR observations of mesospheric co2 and h2o clouds on mars,
J. Geophys. Res.-Planets, 116, E00J02,
https://doi.org/10.1029/2011JE003827, 2011. a
Walterscheid, R. L., Hickey, M. P., and Schubert, G.: Wave
heating and jeans escape in the martian upper atmosphere, J. Geophys.
Res.-Planets, 118, 2169–9402,
https://doi.org/10.1002/jgre.20164, 2013. a
Witt, G.: Height, structure and displacements of noctilucent
clouds, Tellus, 1–18, 1–2, 1962. a
Yiğit, E. and Medvedev, A. S.: Heating and cooling of the
thermosphere by internal gravity waves, Geophys. Res. Lett.,
36, L14807, https://doi.org/10.1029/2009GL038507, 2009. a
Yiğit, E. and Medvedev, A. S.: Extending the
parameterization of gravity waves into the thermosphere and modeling their
effects, in: Climate and Weather of the Sun-Earth System (CAWSES),
edited by: Lübken, F.-J., Springer Atmospheric Sciences,
Springer Netherlands, 467–480, https://doi.org/10.1007/978-94-007-4348-9_25, 2013. a
Yiğit, E. and Medvedev, A. S.: Internal wave coupling
processes in Earth's atmosphere, Adv. Space Res., 55,
983–1003, https://doi.org/10.1016/j.asr.2014.11.020, 2015. a
Yiğit, E. and Medvedev, A. S.: Role of gravity waves in
vertical coupling during sudden stratospheric warmings, Geosci.
Lett., 3, 1–13, https://doi.org/10.1186/s40562-016-0056-1, 2016. a
Yiğit, E. and Medvedev, A. S.: Influence of parameterized
small-scale gravity waves on the migrating diurnal tide in earth's
thermosphere, J. Geophys. Res.-Space, 122, 4846–4864,
https://doi.org/10.1002/2017JA024089, 2017. a
Yiğit, E., Aylward, A. D., and Medvedev, A. S.:
Parameterization of the effects of vertically propagating gravity waves for
thermosphere general circulation models: Sensitivity study, J.
Geophys. Res., 113, D19106, https://doi.org/10.1029/2008JD010135, 2008. a, b, c, d
Yiğit, E., Medvedev, A. S., Aylward, A. D., Hartogh, P., and
Harris, M. J.: Modeling the effects of gravity wave momentum deposition on
the general circulation above the turbopause, J. Geophys. Res.,
114, D07101, https://doi.org/10.1029/2008JD011132, 2009. a, b, c
Yiğit, E., Medvedev, A. S., and Hartogh, P.:
Gravity waves and high-altitude CO2 ice cloud formation in the martian
atmosphere, Geophys. Res. Lett., 42, 4294–4300,
https://doi.org/10.1002/2015GL064275, 2015a.
a
Yiğit, E., England, S. L., Liu, G., Medvedev, A. S., Mahaffy, P. R.,
Kuroda, T., and Jakowsky, B.: High-altitude gravity waves
in the martian thermosphere observed by MAVEN/NGIMS and modeled by a
gravity wave scheme, Geophys. Res. Lett., 42, 8993–9000,
https://doi.org/10.1002/2015GL065307, 2015b. a
Zurek, R. W. and Smrekar, S. E.: An overview of the Mars
Reconnaissance Orbiter (MRO) science mission, J. Geophys.
Res., 112, E05S01, https://doi.org/10.1029/2006JE002701, 2007. a