Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 36, issue 4 | Copyright
Ann. Geophys., 36, 1073-1080, 2018
https://doi.org/10.5194/angeo-36-1073-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Regular paper 08 Aug 2018

Regular paper | 08 Aug 2018

Statistical survey of day-side magnetospheric current flow using Cluster observations: bow shock

Evelyn Liebert, Christian Nabert, and Karl-Heinz Glassmeier Evelyn Liebert et al.
  • Institut für Geophysik und extraterrestrische Physik, Technische Universtität Braunschweig, Braunschweig, Germany

Abstract. We present the first comprehensive statistical survey of the day-side terrestrial bow shock current system based on a large number of Cluster spacecraft bow shock crossings. Calculating the 3-D current densities using fluxgate magnetometer data and the curlometer technique enables the investigation of current locations, directions, and magnitudes in dependence on arbitrary IMF orientation. In case of quasi-perpendicular shock geometries we find that the current properties are in good accordance with theory and existing simulation results. However, currents at quasi-parallel shock geometries next to the foreshock region underlie distinct variations regarding their directions.

Publications Copernicus
Download
Short summary
At the bow shock the solar wind is slowed down in front of Earth's magnetosphere. This is accompanied by a gain in strength of the magnetic field, which implies that the bow shock carries electric currents. We present the a comprehensive statistical study of bow shock currents making use of multi-point data collected by Cluster spacecraft. We find that the currents depend on the shock geometry and the interplanetary magnetic field and are in good accordance with theory and simulation results.
At the bow shock the solar wind is slowed down in front of Earth's magnetosphere. This is...
Citation
Share