Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 35, issue 6 | Copyright
Ann. Geophys., 35, 1249-1268, 2017
https://doi.org/10.5194/angeo-35-1249-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 27 Nov 2017

Regular paper | 27 Nov 2017

Global characteristics of auroral Hall currents derived from the Swarm constellation: dependences on season and IMF orientation

Tao Huang1,2, Hermann Lühr2, and Hui Wang1 Tao Huang et al.
  • 1Department of Space Physics, College of Electronic Information, Wuhan University, 430072 Wuhan, China
  • 2GFZ, German Research Centre for Geosciences, Sect. 2.3 “Geomagnetism”, 14473 Potsdam, Germany

Abstract. On the basis of field-aligned currents (FACs) and Hall currents derived from high-resolution magnetic field data of the Swarm constellation, the average characteristics of these two current systems in the auroral regions are comprehensively investigated by statistical methods. This is the first study considering both current types determined simultaneously by the same spacecraft in both hemispheres. The FAC distribution, derived from the novel Swarm dual-spacecraft approach, reveals the well-known features of Region 1 (R1) and Region 2 (R2) FACs. At high latitudes, Region 0 (R0) FACs appear on the dayside. Their flow direction, up or down, depends on the orientation of the interplanetary magnetic field (IMF) By component. Of particular interest is the distribution of auroral Hall currents. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. The eastward electrojet is about 1.5 times stronger in local summer than in winter. Conversely, the westward electrojet shows less dependence on season. As to higher latitudes, part of the electrojet current is closed over the polar cap. Here the seasonal variation of conductivity mainly controls the current density. During local summer of the Northern Hemisphere, there is a clear channeling of return currents over the polar cap. For positive (negative) IMF By a dominant eastward (westward) Hall current circuit is formed from the afternoon (morning) electrojet towards the dawn side (dusk side) polar cap return current. The direction of polar cap Hall currents in the noon sector depends directly on the orientation of the IMF By. This is true for both signs of the IMF Bz component. Comparable Hall current distributions can be observed in the Southern Hemisphere but for opposite IMF By signs. Around the midnight sector the westward substorm electrojet is dominating. As expected, it is highly dependent on magnetic activity, but it shows only little response to season and IMF By polarity. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.

Publications Copernicus
Download
Short summary
This is the first study considering ionospheric currents (both field-aligned current and Hall current) derived from high-resolution magnetic field data of the Swarm constellation in both hemispheres. The prominent auroral electrojets are found to be closely controlled by the solar wind input, but we find no dependence of their intensity on the IMF By orientation. An important finding is that all the IMF By dependences of FACs and Hall currents practically disappear in the dark winter hemisphere.
This is the first study considering ionospheric currents (both field-aligned current and Hall...
Citation
Share