Mirror mode waves in Venus’s magnetosheath: solar minimum vs. solar maximum

Martin Volwerk¹, Daniel Schmid¹,², Bruce T. Tsurutani³, Magda Delva¹, Ferdinand Plaschke¹, Yasuhiito Narita¹, Tielong Zhang¹,⁴, and Karl-Heinz Glassmeier⁵

¹Space Research Institute, Austrian Academy of Sciences, Graz, Austria
²University of Graz, NAWI Graz, Graz, Austria
³California Institute of Technology, Pasadena, California, USA
⁴CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Hefei, China
⁵Institute for Geophysics and Extraterrestrial Physics, TU Braunschweig, Braunschweig, Germany

Correspondence to: Martin Volwerk (martin.volwerk@oeaw.ac.at)

Received: 30 May 2016 – Revised: 29 September 2016 – Accepted: 8 November 2016 – Published: 23 November 2016

Abstract. The observational rate of mirror mode waves in Venus’s magnetosheath for solar maximum conditions is studied and compared with previous results for solar minimum conditions. It is found that the number of mirror mode events is approximately 14 % higher for solar maximum than for solar minimum. A possible cause is the increase in solar UV radiation, ionizing more neutrals from Venus’s exosphere and the outward displacement of the bow shock during solar maximum. Also, the solar wind properties (speed, density) differ for solar minimum and maximum. The maximum observational rate, however, over Venus’s magnetosheath remains almost the same, with only differences in the distribution along the flow line. This may be caused by the interplay of a decreasing solar wind density and a slightly higher solar wind velocity for this solar maximum. The distribution of strengths of the mirror mode waves is shown to be exponentially falling off, with (almost) the same coefficient for solar maximum and minimum. The plasma conditions in Venus’s magnetosheath are different for solar minimum as compared to solar maximum. For solar minimum, mirror mode waves are created directly behind where the bow shock will decay, whereas for solar maximum all created mirror modes can grow.

Keywords. Magnetospheric physics (magnetosheath; plasma waves and instabilities) – space plasma physics (waves and instabilities)

1 Introduction

Mirror mode (MM) waves are a key ingredient of the wave activity in planetary and cometary magnetosheaths (see, e.g. Tsurutani et al., 1982; Erdős and Balogh, 1993; Glassmeier et al., 1993; Bavassano Cattaneo et al., 1998; Baumjohann et al., 1999; Lucek et al., 1999; Joy et al., 2006; Schmid et al., 2014; Volwerk et al., 2014; Soucek et al., 2015). The waves are generated by a temperature asymmetry and Hasegawa (1969) showed that for a bi-Maxwellian plasma the instability criterion is given by

\[1 + \beta_\perp \left(1 - \frac{T_\perp}{T_\parallel} \right) < 0. \]

The newly created ions (from ionization of exospheric atoms) are picked up by the solar wind magnetic field creating a ring-beam distribution. Such distributions are unstable and will produce ion cyclotron waves or MM waves (see, e.g. Gary, 1991). At crossing the quasi-perpendicular bow shock the ions are mainly heated in the perpendicular direction, with respect to the background magnetic field, when compared to the parallel direction, increasing the already existing temperature asymmetry of the ring-beam distribution. Theoretically, the growth rate for MM waves was estimated by Gary (1991) to be proportional to the proton cyclotron frequency \(\gamma \propto 0.1\omega_{c,p} \); however, Tártrallyay et al. (2008) with spacecraft observations have shown that this is an overestimation.

Another driver for MM waves is magnetic field line draping (see also Tsurutani et al., 2011; Volwerk et al., 2008b),
which serves as source of “free energy” in planetary magnetosheaths. As the shocked solar wind moves deeper into the magnetosheath, the planet will act as a conducting obstacle in the flow and will “hang up” the magnetic field in its neighbourhood, whereas the parts of the field lines further out from the Venus–Sun line will continue to flow with the magnetosheath flow velocity. This causes the field lines to drape around the planet (Zhang et al., 2010; Du et al., 2013). Field line draping around Venus’s ionosphere has two effects: first it leads to a squeezing of the plasma, by which the hot-T∥ plasma is sent towards the downstream region, and secondly the magnetic tension leads to an increase of T⊥ (see also Crooker and Siscoe, 1977).

In the solar wind this distribution will generate mainly ion cyclotron waves (Delva et al., 2008) because of the solar wind plasma-β usually being lower than 1, but it sometimes also gives rise to MM waves at a very low occurrence rate of ∼4 per day (Zhang et al., 2008b). In the magnetosheath, however, MM waves are most likely expected to be generated. Tsurutani et al. (2002) and Remya et al. (2014), however, showed that during a period of exceptionally low solar wind plasma-β (∼0.35), the magnetosheath can be prone to a high occurrence rate of ion cyclotron waves (see also Czajkowska et al., 2001).

At Venus these MM waves were first discovered (Volwerk et al., 2008a) from the Venus Express mission (VEX, Svedhem et al., 2007) using only the magnetometer data (Zhang et al., 2006). The waves were shown to have a period between ∼4 and ∼15 s depending on the location in the magnetosheath. A statistical study over 1 Venus year (i.e. 224 Earth days) during solar minimum was performed by Volwerk et al. (2008b), which showed that the occurrence rate of MM waves is highest just behind the bow shock as well as close to the ionopause: the former location because of the perpendicular heating by the bow shock increasing the temperature anisotropy and the latter location because of the magnetic field pile-up, increasing field strength and thereby the temperature anisotropy through the first adiabatic invariant. It was also demonstrated that MM waves are mainly generated for quasi-perpendicular bow shock conditions, as expected.

In this paper, the solar maximum data are analysed first to obtain the occurrence rate and strengths of the MM waves. Then the results are compared to those for solar minimum. Further statistical analysis is performed on the MM strength, and the growth rate is estimated for both solar conditions. A discussion about the differences and similarities between the two states of solar activity is then performed and the paper ends with some conclusions and concluding remarks.

$$B = \Delta B / B = 2|B - B_{bk}| / B_{bk}$$

(2)

is determined, where B is the magnetic field magnitude and the background magnetic field B_{bk} is obtained by low-pass
filtering the data, where variations with periods shorter than 3 min are filtered out. In this paper the MM wave trains are called “events”, where an event consists of sequential 20 s sliding windows in which the identification criteria are met and the smallest size of one event is one window. The MM identification criteria are as follows:

- a small angle $\theta_{Bmv} \leq 20^\circ$ between maximum variance direction and background magnetic field (Price et al., 1986)
- a large angle $\phi_{Bmv} \geq 80^\circ$ between minimum variance direction and background magnetic field
- a minimal strength during an event $B > 0.2$.

In Fig. 1 the two angles are shown as red dots (θ) and green pluses (ϕ), respectively. The grey-shaded intervals show MM waves, except for the two marked with BS (c), which indicate the bow shock.

3 Bow shock location

In Zhang et al. (2008a) the statistical location of the bow shock was determined using the observed crossings of the bow shock into and out of the magnetosheath. The equation for the conic section that was used to describe the bow shock is

$$R_{BS} = \frac{L}{1 + \epsilon \cos(SZA)},$$

where L is the terminator crossing, ϵ is the eccentricity and SZA is the solar zenith angle. Fitting the observed bow shock locations for $20^\circ \leq SZA \leq 120^\circ$, Zhang et al. (2008a) found that $L \approx 2.14$ and $\epsilon \approx 0.621$, which leads to a terminator distance of $R_{BS,1} \approx 2.14 R_V$, which is slightly smaller than the value $R_{BS,1} \approx 2.40 R_V$ which was found by Russell et al. (1988) for solar maximum conditions using Pioneer Venus Orbiter data, with an eccentricity $\epsilon \approx 0.609$.

4 Statistical study

In order to extend the solar minimum statistical MM study (24 May–31 December 2006, Volwerk et al., 2008b) to solar maximum, 1 Venus year (224 Earth days) of the 1 Hz magnetometer data from Venus Express, around solar maximum 2011–2012, was used (1 November 2011–10 June 2012) and processed in the same way. The MM waves that were found in Venus’s magnetosheath are shown in Fig. 2 in cylindrical coordinates X_{VSO}, and the distance of VEX from the Venus–Sun line $R = \sqrt{X_{VSO}^2 + Z_{VSO}^2}$.

First, there are more events for solar maximum (a total of 1857 events) than for solar minimum (a total of 1637 events). Also, it can be seen that the events for solar maximum already appear more distant from Venus as the nominal solar maximum bow shock location (Russell et al., 1988) is at greater distances than the solar minimum bow shock location (Zhang et al., 2008a).

For solar maximum the ionization rate around Venus is much higher than for solar minimum (see also, e.g. Delva et al., 2015), and thus the bow shock and ionopause move outward from Venus (e.g. Alexander and Russell, 1985; Shan et al., 2015).

4.1 Mirror mode wave observation rate

Using the location of VEX and the time interval that the spacecraft is within a $0.25 \times 0.25 R_V$ box, the MM observation rate is calculated, defined as

$$P = \frac{\text{number of events in box}}{\text{time spent in box}}.$$

Although there are, as expected, differences in the details of the observation rate plots in Fig. 3, basically the major differences are the higher number of events for solar maximum.
(1857 vs. 1637) and more events further away from Venus as the bow shock location moves outward. The highest observation rates can be found behind the bow shock and towards the ionopause, along the flow channel of the plasma in the magnetosheath, parallel to the X_{VSO} axis, close to the Venus–Sun line with $1.0 \leq R \leq 1.5$. This will be discussed in more detail below. As a comparison, the maximum observational rate for solar minimum is $P \approx 3$ events per hour, whereas for solar maximum the maximum observational rate is $P \approx 4$ events per hour.

Taking a closer look at the two panels in Fig. 3 and the distribution of strengths B of the MM waves, the events are binned with a bin size of $\Delta B = 0.1$. The results for both solar minimum and maximum are shown in Fig. 4 by red circles and blue asterisks respectively (see also Fig. 3 in Volwerk et al., 2008b). For both distributions a second-order polynomial has been fitted and is shown as a grey dotted line, which indicates a change of slope. Therefore, the weak ($B \leq 1.2$) and strong ($B \geq 0.8$) events are also fitted linearly:

$$\log(N_{\text{mm}}(B)) \propto a \cdot B,$$

and they are shown as a solid and dashed line respectively. The results of this linear fit are shown in Table 1.

For the weak part, $B \leq 1.2$, the slopes are quite similar; however, for the strong events there is a larger difference in the slopes. These fit values probably reflect the (varying) growth rate of the MM waves, which will be discussed in the following section.

Table 1. The results of the slopes a of the linear fits to the weak and strong MM waves in Fig. 4.

<table>
<thead>
<tr>
<th></th>
<th>Weak a</th>
<th>χ^2</th>
<th>Strong a</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar minimum</td>
<td>-3.39 ± 0.02</td>
<td>0.99</td>
<td>-2.45 ± 0.10</td>
<td>0.89</td>
</tr>
<tr>
<td>Solar maximum</td>
<td>-3.04 ± 0.03</td>
<td>0.98</td>
<td>-1.82 ± 0.10</td>
<td>0.87</td>
</tr>
</tbody>
</table>

To investigate the distribution of strengths B of the MM waves, the events are binned with a bin size of $\Delta B = 0.1$. The results for both solar minimum and maximum are shown in Fig. 4 by red circles and blue asterisks respectively (see also Fig. 3 in Volwerk et al., 2008b). For both distributions a second-order polynomial has been fitted and is shown as a grey dotted line, which indicates a change of slope. Therefore, the weak ($B \leq 1.2$) and strong ($B \geq 0.8$) events are also fitted linearly:

$$\log(N_{\text{mm}}(B)) \propto a \cdot B,$$

and they are shown as a solid and dashed line respectively. The results of this linear fit are shown in Table 1.
4.3 Mirror mode growth rate

To enable a discussion of the growth rate of the MM waves, first the distribution of the event strengths along the magnetosheath flow direction needs to be investigated. In order to do that the data are split up into three bins in the direction perpendicular to the Venus–Sun line: $0 \leq R \leq 1.0$, $1.0 \leq R \leq 1.5$ and $1.5 \leq R \leq 2.5$. For each event the distance along the flow lines to the model bow shock location, colour coded by the distance from the Venus–Sun line. The bottom panels show a zoom-in on $1 R_{V}$ around the model bow shock location $X_{VSO} = 0$. It shows that for all data the sudden increase of MM waves near the bow shock is much more pronounced for solar minimum than for solar maximum. During solar maximum the bow shock is approximately 0.25 R_{V} further out from Venus (see also e.g., Alexander and Russell, 1985), and the MM waves are on average weaker than for solar minimum. For the first few bins in Fig. 6 it is found that $B \approx 0.58 \pm 0.36$ for solar minimum, whereas $B \approx 0.39 \pm 0.19$ for solar maximum.

Behind Venus, i.e. behind the terminator, the MM waves decay in all cases, with decay rates, for solar maximum, which are approximately half the growth rate.

5 Discussion

The comparison of the statistical studies of MM waves at solar minimum and at solar maximum shows some expected results; however, some unexpected distributions are also found. The main difference between solar minimum and maximum for cycle is that the Sun radiates more UV, enhancing ionization of Venus’s exosphere. Also, it should be noticed that the 2011–2012 solar maximum was very weak, with an exceptionally low proton density of the solar wind (Delva et al., 2015). It was found that the “undisturbed” solar wind has a density range of $0.5 \leq n_{p} \leq 20$ cm$^{-3}$ for solar minimum, whereas for solar maximum the range is more than a factor of 2 lower: $0.5 \leq n_{p} \leq 8$ cm$^{-3}$. The solar wind velocity is on average slightly lower for solar minimum, ~ 300 km s$^{-1}$, than for solar maximum ~ 350 km s$^{-1}$. The solar wind magnetic field does not significantly change, with a median value of $B_{\infty} \approx 9.88$ nT for solar minimum and ≈ 9.99 nT for solar maximum.

At solar maximum the UV radiation of the Sun increases and thus there will be more ionization of the neutrals in Venus’s exosphere. This is also the reason for the increase in ion cyclotron waves upstream of Venus’s bow shock as shown by Delva et al. (2015). The increased ionization also causes the bow shock and ionosphere to move outward (Alexander and Russell, 1985; Shan et al., 2015), albeit Slavin et al. (1980) argue that charge exchange at low altitudes near the ionopause is causing the shock to move closer at solar minimum.
The MM wave effect is to balance magnetic pressure $B^2/2\mu_0$ and plasma pressure $n_i k_B T_{i\perp}$, and the instability is driven by the temperature anisotropy of the ions (see Eq. 1). This means that the distribution of the MM waves with respect to B is most likely a reflection of the energy distribution of the ions in Venus’s magnetosheath. Unfortunately, there are no papers discussing the plasma properties of Venus’s magnetosheath for solar minimum and maximum. Also the cadence of the plasma instrument ASPERA (Barabash et al., 2007) is more than 3 min, much too long to investigate the MM ion details, as the MM waves have a period between 4 and 15 s.

The changes in bow shock for solar maximum, moving outward and thus increasing in size, and increased ionization by the solar UV radiation could, in principle, increase the number of MM waves generated behind the bow shock in Venus’s magnetosheath. This is, however, not visible in Fig. 1. The first result of the comparison between solar minimum and maximum is that there are more MM waves found for solar maximum (a total of 1857 events) than for solar minimum (a total of 1637 events). The increased size of the bow shock and thus magnetosheath could be responsible for the increased observed number of MM events.

For solar minimum the fitted bow shock location is used from VEX measurements. For solar maximum such a determination from VEX data was not available, and therefore the model from Pioneer Venus data was used. The question may arise as to whether the solar maximum model is sufficiently accurate to use in order to determine the behaviour of the mirror mode waves in Venus’s magnetosheath, as has been done in Figs. 3 and 6. Looking at the observations of MM waves as shown in Fig. 2, it is clear from both panels that the average location of the bow shock fits the data reasonably well, with a slightly larger discrepancy for solar maximum. Unfortunately, there are no error bars given for either of the bow shock fits.

This difference in bow shock location has no influence on the observational rates given in Fig. 3, but it could have consequences for the fits in Fig. 6. Figure 2 shows that in the region of interest for Fig. 6 (i.e. $1.0 \leq R \leq 1.5 R_V$) there are only very few events that lie outside the model bow shock, and these points have not been taken into account in the determination of the growth rates of the MM waves.

Naturally, for a “perfect” fit, the distance to the observed bow shock would have to be determined, which is because of the great number of events unfeasible. This means that some of the distances can be incorrect. When the results from the observational rates in Fig. 3 are compared with the results of the growth rates in Fig. 6, it is clear that the two are in agreement.

Previous results by Génot et al. (2009) and Dimmock et al. (2015) have shown that the occurrence rate of MM waves in the Earth’s magnetosheath is positively correlated to the Alfvén Mach number of the upstream solar wind.
Figure 6. The distribution of the strength B of the MM waves as a function of distance to the model bow shock for $1.0 < R < 1.5$, the green population in Fig. 5. The coloured bars show the lower quartile (cyan), mean (red), median (blue), upper quartile (magenta) and maximum (black) values of each bin. The fits to these values are shown in the same colours, and the obtained growth rates are listed in Table 2.

shows, however, that although the number of events for solar maximum has increased slightly, the observational rate as defined in Eq. (4) does not particularly change. Indeed, taking into account the results by Delva et al. (2015) the decrease in average solar wind proton density by a factor of ~ 2 and the increase in average solar wind velocity by a factor of ~ 1.2 show that the average solar wind Alfvén Mach number changes by $1.2/\sqrt{2} \approx 0.9$ from solar minimum to solar maximum. Therefore, a significant difference in the MM occurrence rate is not expected from this slight enhancement. The observational rate is overall the same but differently distributed over Venus’s magnetosheath. This is most likely a result of the bow shock conditions for solar minimum and maximum being dissimilar (e.g. strength or thickness), which then energize the ions differently.

Not all MM waves have equal strength B, as this depends on the available energy of the ions perpendicular to the magnetic field after being shocked by the bow shock crossing. Interestingly, it was found that just behind (i.e. the first three bins in Fig. 6) the bow shock, where freshly generated MM waves are expected, the average strength for solar minimum $\bar{B} \approx 0.59 \pm 0.36$ (32 events) is higher than for solar maximum with $\bar{B} \approx 0.32 \pm 0.22$ (23 events), and also the spread of the strengths is larger for solar minimum as indicated by the given standard deviation. The different average values listed here may or may not be significant. Because of the large standard deviation on these numbers one would be inclined to assume that there is no significance. However, this difference could also indicate that for solar minimum the energization of the ions in the ring distribution, through crossing the quasi-perpendicular bow shock, is stronger for solar minimum, and also that the variation of the bow shock strength is greater for solar minimum. There are no observational papers studying any possible differences for the bow shock for different solar activity conditions. It can also mean that the plasma conditions in the solar minimum magnetosheath are different from solar maximum. Unfortunately, there is also no study of Venus’s magnetosheath plasma environments during solar minimum and maximum.

All MM waves were binned as a function of B, with the result shown in Fig. 4. The binned data indicate an exponential fall-off in the number of MM waves with increasing B. There seems to be a break in the slope near $B \approx 1$. For the weak MM waves ($B \leq 1.2$) the slopes for solar minimum (maximum) are $a \approx -3.39 \pm 0.02 (-3.04 \pm 0.03)$, whereas for strong MM waves ($B \leq 0.8$) the slopes are $a \approx -2.45 \pm 0.10 (-1.82 \pm 0.01)$. This break can be created by the fact that the MM waves are observed during their growth and decay phase in $X_{\text{VS}} > 0$; however, for $X_{\text{VS}} < 0$ all MM waves are decaying whereby the number of “weak” MM waves observed can be increased.

Assuming that the MM waves grow and/or decay when they are transported through the magnetosheath, Tátrallyay et al. (2008) determined a growth rate by fitting ΔB of the MM waves as a function of flow time in the Earth’s magnetosheath, finding an overall growth rate of $0.001 \leq \gamma \leq 0.01 \, \text{s}^{-1}$. In this current paper the MM waves located at distances from the Venus–Sun line between $1.0 \leq R \leq 1.5$ are used to obtain a growth rate; however, not the whole cloud of points is used, but the quantities are listed in Table 2. For solar minimum all fits show negative values, indicating immediate decay of the MM waves after their generation behind the bow shock. Nevertheless, this does not exclude MM wave growth as clearly there are very strong events $B \geq 1.2$ observed at farther distances from the bow shock, which can also be related to field line draping. For solar maximum, on the other hand, all fits show positive growth rates $0.003 \leq \gamma \leq 0.018 \, \text{s}^{-1}$, well within the range that Tátrallyay et al. (2008) found for the Earth’s magnetosheath. Recently, Hoiijoki et al. (2016) used a 5-D Vlasov simulation (2-D...
space and 3-D velocity) to study MM waves in the Earth’s magnetosheath. The obtained simulated growth rate for the MM waves was $0.002 \leq \gamma \leq 0.005 \text{s}^{-1}$, which does not completely cover the ranges estimated from observations in this paper and in Tátrallyay et al. (2008).

The plasma transport time across the magnetosheath can be estimated as $t_t \approx 0.5R_V/v_{pl} \approx 30 \text{s}$, with $R_V = 6052 \text{km}$ and $v_{pl} = 100 \text{km s}^{-1}$ the nominal flow velocity in the magnetosheath (e.g. Guicking et al., 2010). With the maximum growth rate as determined above t_t relates to half an e-folding time. However, in the region $1.0 \leq R \leq 1.5$, the wave growth seems to extend over five bins in Fig. 6, which is $\sim 1.25R_V$ and thus a maximum of ~ 1.25 e-folding times. There is time for the MM waves to evolve while they move toward the terminator. After the MM waves cross the terminator, where the pick-up density is highest (Delva et al., 2015) and the magnetic field starts to diverge, the magnetosheath becomes MM stable and the waves start to decay.

When the MM waves are transported down the magnetosheath, they will eventually enter a MM-stable region and will have to start to decay. Indeed, Figs. 5 and 6 show that B falls off. Table 2 shows the determined decay rates: $-0.009 \leq \gamma \leq -0.001 \text{s}^{-1}$ for $1.0 \leq R \leq 1.5$. There are no quantitative models for the decay of MM waves. Joy et al. (2006) assume a stochastic leaking of ions out of the magnetic bottle (using the model by Constantinescu, 2002), thereby reducing the plasma pressure and the magnetic tension and then starts to straighten the field lines. However, there is no given decay rate for this model.

6 Conclusions

Comparing the MM characteristics in Venus’s magnetosheath between solar minimum and maximum conditions, the following is found:

- There are slightly more MM events ($\sim 14 \%$) for solar maximum than for solar minimum.
- The observational rate for both solar conditions is the same because of the interplay of lower solar wind density and higher solar wind velocity during solar maximum than during solar minimum.1
- The distribution of the number of MM waves as a function of the strength B is exponential with approximately the same coefficient for both solar conditions for “weak” MM waves (i.e. $B \leq 1.2$). There is a less steep exponential for “strong” MM waves (i.e. $B \geq 0.8$) with significant differences in the exponential for solar minimum and maximum.1

- Freshly created MM waves behind the bow shock are on average stronger for solar minimum than for solar maximum.
- For solar minimum the general trend for MM waves is to decay; for solar maximum all MM waves grow, between the bow shock and the terminator.
- The estimated growth rates for the MM waves agree well with those found for the Earth’s magnetosheath.

7 Data availability

Acknowledgements. The work by Daniel Schmid was supported by the Austrian Science Fund FWF under grant P25257-N27. Portions of this work were performed at the Jet Propulsion Laboratory, California Institute of Technology under contract with NASA.

The topical editor, Y. Miyoshi, thanks G. Erdös and one anonymous referee for help in evaluating this paper.

References

Gary, S. P.: Electromagnetic ion/ion instabilities and their conse-

Génot, V., Budnik, E., Jacquey, C., Dandouras, I., and Lucek, E.: Mirror modes observed with Cluster in the Earth’s magne-

Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., and Rus-

Tátrallyay, M., Erdős, G., Balogh, A., and Dandouras, I.: The evolu-

Tsuturani, B. T., Smith, E. J., Anderson, R. R., Ogilvie, K. W., Scudder, J. D., Baker, D. N., and Bame, S. J.: Lion roars and nonsoli-

Volwerk, M., Zhang, T. L., Delva, M., Vöröš, Z., Baumjohann, W., and Glassmeier, K.-H.: First identification of mirror mode waves

