Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 32, issue 7
Ann. Geophys., 32, 875-888, 2014
https://doi.org/10.5194/angeo-32-875-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 32, 875-888, 2014
https://doi.org/10.5194/angeo-32-875-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 29 Jul 2014

Regular paper | 29 Jul 2014

Coordinated radar observations of plasma wave characteristics in the auroral F region

R. A. Makarevich and W. A. Bristow R. A. Makarevich and W. A. Bristow
  • Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA

Abstract. Properties of decameter-scale plasma waves in the auroral F region are investigated using coordinated observations of plasma wave characteristics with the Kodiak HF coherent radar (KOD) and Poker Flat Incoherent Scatter Radar (PFISR) systems in the Alaskan sector. We analyze one event on 14 November 2012 that occurred during the first PFISR Ion-Neutral Observations in the Thermosphere (PINOT) campaign when exceptionally good F region backscatter data at 1 s resolution were collected by KOD over the wide range of locations also monitored by PFISR. In particular, both radar systems were observing continuously along the same magnetic meridian, which allowed for a detailed comparison between the line-of-sight (l-o-s) velocity data sets. It is shown that l-o-s velocity correlation for data points strictly matched in time (within 1 s) depends strongly on the number of ionospheric echoes detected by KOD in a given post-integration interval or, equivalently, on the KOD echo occurrence in that interval. The l-o-s velocity correlations reach 0.7–0.9 for echo occurrences exceeding 70%, while also showing considerable correlations of 0.5–0.6 for occurrences as low as 10%. Using the same approach of strictly matching the KOD and PFISR data points, factors controlling coherent echo power are investigated, focusing on the electric field and electron density dependencies. It is demonstrated that the signal-to-noise ratio (SNR) of F region echoes increases nearly monotonically with an increasing electric field strength as well as with an increasing electron density, except at large density values, where SNR drops significantly. The electric field control can be understood in terms of the growth rate of the gradient-drift waves being proportional to the convection drift speed under conditions of fast-changing convection flows, while the density effect may involve over-refraction at large density values and radar backscatter power proportionality to the perturbation density.

Publications Copernicus
Download
Citation
Share