Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 32, issue 1
Ann. Geophys., 32, 41-55, 2014
https://doi.org/10.5194/angeo-32-41-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 32, 41-55, 2014
https://doi.org/10.5194/angeo-32-41-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Review paper 28 Jan 2014

Review paper | 28 Jan 2014

China's dimming and brightening: evidence, causes and hydrological implications

Y. W. Wang1,2 and Y. H. Yang1 Y. W. Wang and Y. H. Yang
  • 1Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. There is growing evidence that, corresponding to global dimming and brightening, surface solar radiation and sunshine hours over China have undergone decadal fluctuations during the 1960s–2000s. The results of a number of these analyses are, however, very different. In this study, we synthesize reliable results and conclusively address recent advances and insufficiencies in studies on dimming and brightening in China. A temporally and spatially prevalent dimming trend is noted in surface solar radiation, direct solar radiation and sunshine hours since the 1960s. Meanwhile, the changing trend in diffuse solar radiation is less pronounced. Increasing anthropogenic aerosol loading is regarded as the most plausible explanation for China's dimming. The brightening trend since 1990, which mainly occurs in southeastern China and in the spring season, is weak and insignificant. The reverse in the solar radiation trend is associated with climate change by cloud suppression and slowdown in anthropogenic emissions. The future solar radiation trend in China could largely depend on the development of air quality control. Other potential driving factors such as wind speed, water vapor and surface albedo are also non-negligible in specific regions of China. Hydrological implications of dimming and brightening in China lack systematic investigation. However, the fact that solar radiation and pan evaporation trends in China track a similar curve in 1990 further suggests that the pan evaporation paradox could be partly resolved by changes in solar radiation.

Publications Copernicus
Download
Citation
Share