Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 31, issue 4
Ann. Geophys., 31, 755–764, 2013
https://doi.org/10.5194/angeo-31-755-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 31, 755–764, 2013
https://doi.org/10.5194/angeo-31-755-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Regular paper 25 Apr 2013

Regular paper | 25 Apr 2013

A 20-day period standing oscillation in the northern winter stratosphere

K. Hocke1,2, S. Studer1,2, O. Martius2, D. Scheiben1, and N. Kämpfer1,2 K. Hocke et al.
  • 1Institute of Applied Physics, University of Bern, Bern, Switzerland
  • 2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Abstract. Observations of the ozone profile by a ground-based microwave radiometer in Switzerland indicate a dominant 20-day oscillation in stratospheric ozone, possibly related to oscillations of the polar vortex edge during winter. For further understanding of the nature of the 20-day oscillation, the ozone data set of ERA Interim meteorological reanalysis is analyzed at the latitude belt of 47.5° N and in the time from 1979 to 2010. Spectral analysis of ozone time series at 7 hPa indicates that the 20-day oscillation is maximal at two locations: 7.5° E, 47.5° N and 60° E, 47.5° N. Composites of the stream function are derived for different phases of the 20-day oscillation of stratospheric ozone at 7 hPa in the Northern Hemisphere. The streamline at Ψ = −2 × 107 m2 s−1 is in the vicinity of the polar vortex edge. The other streamline at Ψ = 4 × 107 m2 s1 surrounds the Aleutian anticyclone and goes to the subtropics. The composites show 20-day period standing oscillations at the polar vortex edge and in the subtropics above Northern Africa, India, and China. The 20-day period standing oscillation above Aral Sea and India is correlated to the strength of the Aleutian anticyclone.

Publications Copernicus
Download
Citation