Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 29, issue 7 | Copyright
Ann. Geophys., 29, 1259-1265, 2011
© Author(s) 2011. This work is distributed under
the Creative Commons Attribution 3.0 License.

ANGEO Communicates 19 Jul 2011

ANGEO Communicates | 19 Jul 2011

Relativistic transformation of phase-space distributions

R. A. Treumann1,2,*, R. Nakamura3, and W. Baumjohann3 R. A. Treumann et al.
  • 1Department of Geophysics and Environmental Sciences, Munich University, Munich, Germany
  • 2Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA
  • 3Space Research Institute, Austrian Academy of Sciences, Graz, Austria
  • *visiting: International Space Science Institute, Bern, Switzerland

Abstract. We investigate the transformation of the distribution function in the relativistic case, a problem of interest in plasma when particles with high (relativistic) velocities come into play as for instance in radiation belt physics, in the electron-cyclotron maser radiation theory, in the vicinity of high-Mach number shocks where particles are accelerated to high speeds, and generally in solar and astrophysical plasmas. We show that the phase-space volume element is a Lorentz constant and construct the general particle distribution function from first principles. Application to thermal equilibrium lets us derive a modified version of the isotropic relativistic thermal distribution, the modified Jüttner distribution corrected for the Lorentz-invariant phase-space volume element. Finally, we discuss the relativistic modification of a number of plasma parameters.

Publications Copernicus