Articles | Volume 28, issue 9
https://doi.org/10.5194/angeo-28-1795-2010
https://doi.org/10.5194/angeo-28-1795-2010
30 Sep 2010
 | 30 Sep 2010

Interpolation of externally-caused magnetic fields over large sparse arrays using Spherical Elementary Current Systems

S. A. McLay and C. D. Beggan

Abstract. A physically-based technique for interpolating external magnetic field disturbances across large spatial areas can be achieved with the Spherical Elementary Current System (SECS) method using data from ground-based magnetic observatories. The SECS method represents complex electrical current systems as a simple set of equivalent currents placed at a specific height in the ionosphere. The magnetic field recorded at observatories can be used to invert for the electrical currents, which can subsequently be employed to interpolate or extrapolate the magnetic field across a large area. We show that, in addition to the ionospheric currents, inverting for induced subsurface current systems can result in strong improvements to the estimate of the interpolated magnetic field. We investigate the application of the SECS method at mid- to high geomagnetic latitudes using a series of observatory networks to test the performance of the external field interpolation over large distances. We demonstrate that relatively few observatories are required to produce an estimate that is better than either assuming no external field change or interpolation using latitudinal weighting of data from two other observatories.

Download