Journal cover Journal topic
Annales Geophysicae An open-access journal of the European Geosciences Union
Ann. Geophys., 27, 755-766, 2009
https://doi.org/10.5194/angeo-27-755-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
16 Feb 2009
First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign
M. Rapp1, I. Strelnikova1, B. Strelnikov1, R. Latteck1, G. Baumgarten1, Q. Li1, L. Megner2, J. Gumbel2, M. Friedrich3, U.-P. Hoppe4, and S. Robertson5 1Leibniz-Institute of Atmospheric Physics, Kühlungsborn, Germany
2Department of Meteorology, Stockholm University, Stockholm, Sweden
3Institute of Communication Networks and Satellite Communications, Graz University of Technology, Austria
4Norwegian Defence Research Establishment (FFI), Kjeller, Norway
5Department of Physics, University of Colorado, Boulder, CO, USA
Abstract. We present in situ observations of mesospheric ice particles with a new particle detector which combines a classical Faraday cup with the active photoionization of particles and subsequent detection of photoelectrons. Our observations of charged particles and free electrons within a decaying PMSE-layer reveal that the presence of charged particles is a necessary but not sufficient condition for the presence of PMSE. That is, additional requirements like a sufficiently large electron density – which we here estimate to be on the order of ~100 cm−3 – and the presence of small scale structures (commonly assumed to be caused by turbulence) need to be satisfied. Our photoelectron measurements reveal a very strong horizontal structuring of the investigated ice layer, i.e., a very broad layer (82–88 km) seen on the upleg is replaced by a narrow layer from 84.5–86 km only 50 km apart on the downleg of the rocket flight. Importantly, the qualitative structure of these photoelectron profiles is in remarkable qualitative agreement with photometer measurements on the same rocket thus demonstrating the reliability of this new technique. We then show that the photoelectron currents are a unique function of the ice particle volume density (and hence ice mass) within an uncertainty of only 15% and we derive corresponding altitude profiles of ice volume densities. Derived values are in the range ~2–8×10−14 cm3/cm3 (corresponding to mass densities of ~20–80 ng/m3, and water vapor mixing ratios of 3–12 ppm) and are the first such estimates with the unique spatial resolution of an in situ measurement.

Citation: Rapp, M., Strelnikova, I., Strelnikov, B., Latteck, R., Baumgarten, G., Li, Q., Megner, L., Gumbel, J., Friedrich, M., Hoppe, U.-P., and Robertson, S.: First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign, Ann. Geophys., 27, 755-766, https://doi.org/10.5194/angeo-27-755-2009, 2009.
Publications Copernicus
Download
Share