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Abstract. Before radar estimates of the raindrop size dis-than 8% relative error). This study addresses retrieval error
tribution (DSD) can be assimilated into numerical weatherand does not attempt to quantify absolute or representative-
prediction models, the DSD estimate must also include amess errors.

uncertainty estlmat_e ' Ense_mble S'Fatlsncs are baSEd on us"]'geywords. Atmospheric composition and structure (Instru-
the same observations as inputs into several different mod-

els with the spread in the outputs providing an uncertaint ments and techniques) — Meteorology and atmospheric dy-
. pr puls providing Ynamics (Precipitation) — Radio science (Remote sensing)
estimate. In this study, Doppler velocity spectra from col-

located vertically pointing profiling radars operating at 50
and 920 MHz were the input data for 42 different DSD re-
trieval models. The DSD retrieval models were perturbations]; |ntroduction
of seven different DSD models (including exponential and
gamma functions), two different inverse modeling method-The assimilation of radar precipitation estimates into numer-
ologies (convolution or deconvolution), and three different jcal weather prediction models is a very difficult task because
cost functions (two spectral and one moment cost functions)the numerical models require both the precipitation estimate
Two rain events near Darwin, Australia, were analyzed inas well as the uncertainty of that estimate in order to blend the
this study producing 26 725 independent ensembles of massbservations with the model. Quantifying the precipitation
weighted mean raindrop diametBy, and rain rateR. The uncertainty from radar observations is also difficult because
mean and the standard deviation (indicated by the symbolshe uncertainty results from four types of errors: measure-
(x) ando {x}) of D,, and R were estimated for each ensem- ment, model, representativeness, and sampling (Bringi and
ble. For small ranges dfD,,) or (R), histograms ot {D,,} Chandrasekar, 2001). Measurement errors are due to the pre-
and o {R} were found to be asymmetric, which prevented cision of the instrument. Model errors result from represent-
Gaussian statistics from being used to describe the unceiing observations with idealized mathematical expressions.
tainties. Therefore, 10, 50, and 90 percentiles ob,,} and Representativeness errors are due to time evolving changes
o{R} were used to describe the uncertainties for small inter-and spatial inhomogeneity of precipitation within the sample
vals of (D,,) or (R). The smallesD,, uncertainty occurred volume during the observation dwell time. Sampling errors
for (D,,) between 0.8 and 1.8 mm with the 90th and 50th result from changes in precipitation between successive ob-
percentiles being less than 0.15 and 0.11 mm, which correservations.
spond to relative errors of less than 20% and 15%, respec- This study focuses on quantifying the model errors of pre-
tively. The uncertainty increased for smaller and largey,) cipitation estimates retrieved from vertically pointing profil-
values. The uncertainty ok increased with(R). While  ing radars by using the concept of ensemble statistics. The
the 90th percentile uncertainty approached 0.6 mifor  underlying principle of ensemble statistics is that the same
a 2mm il rain rate (30% relative error), the median uncer- radar observations are the inputs into multiple models and
tainty was less than 0.15 mrmhat the same rain rate (less the range of output solutions determines the uncertainty of
the model estimate. When different observations are used as
inputs to the same models (for example, observations from

Correspondence taC. R. Williams two different profiling radars), differences in the model es-
BY (christopher.williams@colorado.edu)  timates will be due in part to the representativeness of the
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input observations. By using the same inputs in every modelrain rate. The statistics of 26 725 independent ensembles are

differences in the output are due to assumptions about thanalyzed to provide uncertainty estimates that can be applied

model precipitation physics and due to the numerical codeto each precipitation estimate.

used in the retrieval process. This paper has the following format. The seven different
Vertically pointing profiling radars have been used for over DSD models are discussed in Sect. 2. The forward model of

20 years to estimate the number and size of raindrops fallingstimating the radar reflectivity-weighted Doppler velocity

directly overhead (Wakasugi et al., 1986). Three major mod-spectra when given a raindrop size distribution is discussed

eling factors determine how the radar observations are conin Sect. 3. The inverse model methodologies are presented

verted into precipitation estimates. The first major factor isin Sect. 4, followed by the discussion of the cost functions

the mathematical functional shape of the raindrop size disin Sect. 5. The profiling radar observations are discussed

tribution (DSD). Typically, there are more small raindrops in Sect. 6. The ensemble statistics and conclusions are pre-

within a given volume than large raindrops, which leads tosented in Sects. 7 and 8.

the assumption that the shape of the DSD follows an ex-

ponential (Waldvogel, 1974) or a gamma function (Ulbrich,

1983). By assuming a particular shape of the DSD, error2 DSD models

are added to the retrieved DSD because the unknown trm?.he number and size of raindro ithi it vol

distribution of raindrops may not follow the assumed shape.. . ps within a unit volume
. . ‘is described by the number concentratiovigD) [number

This study uses seven different DSD shape models previ-

_3 1 . . s .
ously discussed in the literature (Waldvogel 1974; UIbriCh’erheggis 1}]‘;'350 E::Iiigltzelj:/glzrnotl?jzzn?e(:;tg?gggg gﬁtljjr)o
1983; Marshall and Palmer, 1948; lllingworth and Black- P q P

man, 2002; Zhang et al., 2003; Feingold and Levin, 1986). [mm]. Given the number concentration, several quantities

The second major factor that contributes to the model errordescnbmg the preC|p|ta}t|_c>n can be esgmétged’ mclud.lng the
radar equivalent reflectivity factog,[mm® m~2]. Assuming

of p_rgmpnauon gstlmates retr_|eve_d from vertically pointing Rayleigh scattering; is estimated using (Doviak and Zrnic,
profiling radars is the numerical inverse methodology thatlggg)

converts the radar observations into raindrop size distribu-
tion estimates. If the DSD were known a priori, then the co

radar observations can be uniquely determined using radar = | N(D)D®%D. @
scattering theory. This forward modeling maps the DSD into

the radar domain. However, converting radar observations o . )

into the DSD domain is an inverse modeling problem andTh_e reflectivity factor can be expressed in log units [dBZ]
there is not a unique mapping from a given radar observatiort!S'N9

into a unique DSD. This study uses both the convolution and

deconvoIStion numerical inve};se modeling methodologies toZ = 1010G10(2). @
estimate the DSD given a set of radar observations (SchafeFhe rain rateR [mm h™1], is estimated using

et al., 2002; Lucas et al., 2004).

The third major factor contributing to model error is the 67
cost function that objectively determines the “best” solution " — 1000
when comparing the model with the observed radar obser-
vation. The most commonly used cost function involves theyhere (D) is the terminal fall speed of the raindrop ex-
sum of the squared difference between the model and obsefressed in ms!, and leading constants scale the rain rate
vation. This cost function is also related to the chi-squaredsg that it is expressed in mnth
(x?) statistic. Another cost function involves the absolute  Another useful parameter used to describe the DSD is the

cost function to remove the influence of outliers. This study

uses these two cost functions plus a third that compares the ?ON(D)D“dD

first three moments of the modeled and observed radar data 0

and is a more efficient calculation than the first two cost func-Pm = %o

tions. [ N(D)D3dD
Using seven DSD models, two numerical inverse model- 0

ing methods, and three cost functions yields 42 DSD esti-As can be seen from Eqgs. (1) through (4), the DSD can be

mates for each radar observation. These 42 DSD estimatedescribed in detail usingy (D) or described in general using

constitute one ensemble. The profiling radar observationsZ, D,,, andR.

from collocated 50- and 920-MHz profilers near Darwin, While it would be useful to have/ (D) estimates for ev-

Australia, during two rain events are used in this study toery raindrop diameter size, noise and measurement uncer-

estimate the mean mass-weighted raindrop diameter and thainty preventsV (D) from being estimated at each raindrop

/ N(D)D3v(D)dD ()
0

(4)
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size. ThereforeN (D) is described using mathematical ex- 2.4 Constantu gamma distribution
pressions that are functions of diameter, and the following . _ . _
subsections describe the seven DSD models used in previouss previously discussed, the value @fin the gamma dis-

work and in this study. tribution has a large influence on the shape of the DSD at
small raindrop sizes. The work by Illingworth and Blackman
2.1 Gamma distribution (2002) suggests that radars that observe the raindrops within

the Rayleigh scattering regime can not resolve the small rain-
The work by Ulbrich (1983) described the DSD using a mod- drops, and a fixed value of the shape parameter is appropri-
ified Gamma function of the form ate for describing the DSD when using weather radars. In
D this study, retrievals are performed using the gamma distri-
N(D)=NoD" exp(—=A D) =NoD" eXp(—(4+M)D—> (5)  bution (Eq. 5) withu set to constant values of 2.5 and 5. A
" constantu reduces the Gamma function DSD (Eg. 5) to two
where Ny is the scaling parameter [numberdm—1-y],  unknowns.
w [unitless] is the shape parameter, andmm™1] is the . o
slope parameter which is related to the mean diameter us?-5 Constrained gamma distribution

ing A=(4+uw)/D,,. While u does influence the slope of N . .
R : . The gamma distribution expressed in Eq. (5) consists of 3

h I h I fl . .

the distribution at large diameterg, has a large influence different variablesNo, 12, andD,,. The work by Zhang et

on the curvature of the distribution at small diameters. When
u has negative values, the number concentration increase | (.2003) and Brandeg et al. (2003) sugggsts that a mathe-
natical relationship exists betwegnand A in the gamma

as the diameter decreases, and mathematically (and nomy

physically) has infinite number of drops with zero diameters.d's_trIbUtlon DSD r_n(_)de_l. Wh||e_ the particular—A relation-
Conversely, whem has positive values the number concen- ship may be precipitation regime-dependent and more work
’ is needed to validate these relationships, this study uses the

tration decreases as the diameter decreases, causing a do ' tal (2003 A relationship of
ward curvature of the number concentration at small raindrog™ 219 €t al- ( ) — A relationship o

sizes. A = 0.0365:.2% + 0.735: + 1.935 (8)

2.2 Exponential distribution This u— A relationship was converted intqa- D,, relation-
ship usingA=(4+u)/ Dy, yielding

The exponential distribution has been used in many studies A+

to describe the DSD before Ulbrich (1983) introduced the D,, = 5 . 9)

Gamma distribution DSD model (Waldvogel, 1974). The ex- 0.0365:< +0.735 +1.935

ponential DSD is a special case of the Gamma distributioy 6 | og-normal distribution
DSD whenu=0 and is expressed as
The raindrop size distribution has been described by Fein-

N(D) = Ngexp(—AD) = Ng exp<—4 D ) ) (6) gold and Levin (1986) using a log-normal distribution of the
D form
i N D

2.3 Marshall-Palmer distribution ND) = N, exp[— In2 (D_) (2In20)] (10)

In the seminal work by Marshall and Palmer (1948), the DSD ) " )

was described by the set of equations where N; is the total number of drops per unit volume
[countnT3] and o describes the width of the distribution.

Nmp(D) = Nomp exp(—AmpD) (7a) A unique feature of the log-normal distribution is thétD)
approaches zero as the raindrop diameter approaches zero.

Nowmp = 8000 (7b)

Awp = 4.1R702L (7c) 3 Radar observations of DSD

where Ngwmp is the Marshall-Palmer scale parameter and Assuming a radar beam is pointing vertically and assuming
Awp is the Marshall-Palmer slope parameter which is a func-the raindrop size distribution is known and uniformly dis-

tion of rain rate. The Marshall-Palmer (MP) distribution is a tributed throughout the radar pulse volume, radar backscat-
special set of the exponential distribution DSDs constrainedering theory is used to construct two mathematical estimates
to have a fixed scale parameté¥y(p=8000 and a slope of the radar observations (see Doviak and Zrnic, 1993, for
parameter dependent on the rain rate. The MP distributiordetails of the radar backscattering theory). The first mathe-
was developed using mid-latitude stratiform rain and it will matical estimate is from an ideal radar that has infinitesimal
be shown in Sect. 7 that the MP distribution is not well suited beamwidth and the raindrops are in a static atmosphere with-
to describe the tropical rainfall data set used in this study. out any vertical motion and without any turbulence. While
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this ideal radar and atmosphere does not exist, this mathesf Shyqro(v) is accomplished by convolvinghygro(v) by the
matical framework is useful to perform the coordinate trans-spreading and shifting spectrum

formation from the number concentration’s raindrop diam- )
eter domain to the radar’s raindrop fall-speed domain. The_ N — (v—Dopple)” | (14
second mathematical estimate includes the finite beamwidtfar(? ~“Dopples aa'r)_moair eXp 202 (13)

of a realistic radar along with the vertical motion and tur- A

bulence of a realistic atmosphere. These three factors corwhere Sair(v — @poppler, 0air) is Gaussian shaped (Gossard,
tribute to spreading the returned power from each raindropl994),wpoppler [N S~1] is the Doppler velocity of the ambi-
into several different velocity channels. Both mathematicalent air motion defined with motions approaching the radar

estimates are discussed in more detail below. as positive Doppler motions consistent with the 1842 work
by Christian Doppler (White, 1982), ang; [ms~!] repre-
3.1 Ideal radar sents the spreading of the spectrum. The leading fraction in

Eq. (13) normalizesyir(v—wpoppler, Cair) tO UNit area when
Assuming a perfect Doppler radar with infinitesimal integrated over all velocities so that the spectral broadening
beamwidth observing a uniformly distributed raindrop size does not modify the total reflectivity dfhydro(v). The con-
distribution N (D) in a static atmosphere without any verti- volution of Shydro(v) by Sair(v—wpoppler oair) is expressed
cal air motion and without any turbulent motion, the modeled mathematically as (Wakasuki et al., 1986)
hydrometeor reflectivity-weighted Doppler spectral density,
Shydro(v) [MM® m=3 (ms1)~1], is uniquely related tV (D)~ Smodel(v)=Sair(v—wDoppler, air)®Shydro(v)+Noise  (14)

through the relation (Atlas et al., 1973 . .
g ( ) where the symba® represents the convolution function.

Shydro(v) = N(D)D%D/dv, (11) The last term in Eqg. (14) is the random noise that is
radar dependent and must be added to every Doppler veloc-

wherev anddv are the velocity channels and velocity resolu- ity channel of the Doppler spectrum. Equation (14) defines

tion of the Doppler velocity spectrum in units of m's The  the forward model of a realistic radar and produces a realis-

variablesD anddD are the raindrop diameters and diame- tic reflectivity-weighted Doppler velocity spectrum when the

ter resolutions corresponding toanddv and have units of  raindrop size distributiov (D), the air motion Doppler ve-

mm. The units 0fShydro(v) are reflectivity per velocity chan-  locity wpoppler and the spectral broadeniigj, are used as

nel (mnP m=3) (ms™1)~! and Shyaro(v)has non-zero values  inputs.

only in the velocity channels with corresponding raindrops.

While dv has the same value for each velocity chandBljs

variable and dependent on the diamdterThrough labora- 4 Numerical inverse model methodologies

tory studies, the terminal fall speed of raindrops is expressed . o
as While Eq. (14) constructs a modeled radar reflectivity

Doppler velocity spectrunfnogel(v), the goal of DSD re-
o —04 trievals is to estimate the raindrop size distributidiiD)
Vtallspeed D) = (9.65— 10.3 exp(—0.6D)) <%> , (12) when the radar observes a Doppler velocity spectrum
Sobs(v). If the retrieved model spectruSinedel(v) approx-
wherepg and p represent the air densities at the ground andimatesSops(v) by minimizing a cost function (described in
the level of the observation aloft, respectively (Gunn andSect. 5), thenV(D) can be estimated frorfimodel(v). One

Kinzer, 1949; Atlas et al., 1973). difficulty with solving this inverse problem is accounting for
o the convolution ofShyqro(v) by the spreading and shifting
3.2 Realistic radar spectrumS,ir(v—wpoppler Tair). TWo methods have been dis-

cussed in the meteorological literature to account for the con-
While Egs. (11) and (12) describe the reflectivity-weighted yojution operation. The oldest method uses stable convolu-
Doppler velocity spectral density for an ideal radar observ-tion calculations to estimatnoege(v) and the newest method
ing any possible raindrop size distributioan(D) in a static  yses numerical deconvolution techniques to remove the in-
atmosphere, finite radar beamwidth and atmospheric vertifjyence of the spreading spectrum to estim@giro(v). In

cal air motion and turbulence need to be added to the radapoth methods)N (D) is adjusted until a cost function is min-
forward model to better represent radar observations. Bothmized. Details of both methods are described below.

the finite radar beamwidth and atmospheric turbulence cause

the observed Doppler velocity spectrum to be spread over @1 Convolution method

wider range of velocity channels. It is also important to in-

clude the shift in the Doppler velocity spectrum due to the The convolution method uses the forward model described
vertical air motion that shifts the raindrop terminal fall speed by Eqg. (14) to estimatéSmodel(v) and iteratively adjusts

to the observed Doppler velocity. The spreading and shiftingN (D) until a cost function betweeSmegel(v) and Sops(v)

Ann. Geophys., 27, 55567, 2009 www.ann-geophys.net/27/555/2009/
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is minimized. One advantage of this method is that calcu- @ ) ©
lating Smodel(v) is a stable numerical operation of the for- DSD Functional 50-MHz ©ooppier g;gcmzn
ward model using the convolution operation. While each 1 |2 Geamms, | Spectrum |_g,, Sal)
forward model calculation is stable, it is possible without '”p“tsl o .
proper numerical coding for the solution to converge to a lo- mi’de ot N(D()) CONSITUCE S, (V- Wpogpr O ®)
cal minimum in the cost function and not the global mini- using (13) Compare

. . . .. . Snodel(V) With
mum. The potential of finding a local minimum versus find- R I @ S (V) using
ing the global minimum is a trade-off between convergence Construct Construct costincich

. . . Shyaro(V) USING S (v) (16), (17), or
speed and searching the whole solution space. In this study (11) & (12) using (14) (18)
the whole solution space is searched to find the global min- W l 0
imum_to avoid the po;sibility of converging to a local mini- No__['Best Solution?
mum in the cost function. The convolution method has been Yes mgt-kfg%
used in many studies including Wakasugi et al. (1986, 1987); : I w
Sato et al. (1990); Currier et al. (1992); Maguire and Avery Eebot b, R
(1994); Ragopadhyaya et al. (1993, 1998, 1999); Schafer et
al. (2002); and Williams (2002). Fig. 1. Convolution method flow diagram.

To illustrate the logic of the convolution method, Fig. 1
shows a flow diagram. The top portion (above the dashed
line) of Fig. 1 shows the inputs into the convolution method &S
which includes the DSD model, estimates @boppier and
’ , S = Sair(v — . Oair) @ S 15

oair, and the observed radar Doppler velocity spectrum of decon(v) = Sair(v — @Doppler, Tair) B Sobs(v) (15)

the rain. Details of estimatin@poppler and oair from radar — whereSopg(v) is the observed Doppler velocity spectrum and
observations and the input rain spectrum are discussed ithe symbol@ indicates the deconvolution operation. One
Sect. 6. The bottom portion of Fig. 1 shows the flow diagrammajor difficulty with numerical deconvolution operations is
of the convolution method. For each retrievabopplerand  that the noise in the observed spectrum can be amplified,
oair femain constant, so the spreading and shifting functionwhich could lead to unstable retrievals and unrealistic solu-
Sair(v—wDoppler 0air) N€EAS to be calculated only once using tions. Studies by Lucas et al. (2004) and Schafer et al. (2002)
Eq. (13) (Fig. 1e). Starting with an initi (D) (box d), the  provide two examples of performing stable deconvolution
initial Shygro(v) is estimated using Eqgs. (11) and (12) (Fig. 1f) routines.

and then convolved b¥air(v—wpoppler oair) t0 produce an Figure 2 shows a flow diagram of the deconvolution
estimate 0fSmodev) Using Eq. (14) (Fig. 1g). This model method. The top portion (above the dashed line) of Fig. 2
spectrum is compared with the observed spectfiggy(v)  shows the inputs into the deconvolution method which are
using one of three different cost functions (Egs. 16, 17, orthe same inputs as for the convolution method, and the bot-
18) as discussed in Sect. 5) (Fig. 1h). If this solution doestom portion shows the flow diagram of the deconvolution
not minimize the cost function (Fig. 1j), theM(D) is ad-  method. Since for each retrievapoppler Tair, and Sobs(v)
justed (Fig. 1i) andShydro(v) is recalculated (Fig. 1f). The remain constant§gecon(v) Needs to be estimated only once
loop through Fig. 1i, f, g, h, j is repeated until the cost func- (see Fig. 2e and g). The iterative procedure starts with an
tion is minimized. After finding the best solutioN,(D) and  injtial estimate ofN (D) (Fig. 2d) which is used to estimate
estimates ofR and D,, using Egs. (3) and (4) (Fig. 1k) are g, 4.o(v) (Fig. 2f), and then compared witlecon(v) USing
saved for future analysis. The flow diagram is repeated usone of three different cost functions (16), (17), or (18) as dis-
ing the same radar observations but different DSD functionakussed in Sect. 5) (Fig. 2h). If this solution does not minimize

shape (described in Sect. 2) to yield 7 solutions for each costhe cost function (Fig. 2j), theN (D) is adjusted (Fig. 2i) and

function. Shydro(v) is recalculated (Fig. 2f). The loop through Fig. 2i,
f, h, j is repeated until the cost function is minimized. After
4.2 Deconvolution method finding the best solutiony (D) and estimates ok and D,,

using Egs. (3) and (4) (Fig. 2k) are saved for future analysis.

While the convolution method applies a spreading function

to the ideal radar spectrutbhygro(v) to estimate a realis- 5 Cost functions

tic radar spectrunSmegel(v) Which is then compared with

the observed spectrumsyps(v), the deconvolution method In order to determine the “best” solution, cost functions are

applies a “de-spreading” function to the observed spectrundefined to subjectively compare the model spectrum with the
Sobs(v) to estimate a deconvolved spectr§gacon(v) which observed spectrum. Three cost functions are used in this
is then compared with the model spectrum from an idealstudy. Two cost functions compare spectra at each velocity
radarShydro(v). The new deconvolved spectrum is expressedchannel and one cost function compares three moments of

www.ann-geophys.net/27/555/2009/ Ann. Geophys., 27, 5652009
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(c) a. Time-height cross section of 920-MHz Profiler Reflectivity, 22 January 2006
(a) ® 10— . R . : 50
DSD Functional 50-MHz Doppler 220-MHZ. Lo .
t Form (Gamma, Spectrum | g spe(c:tl;um.
inputs Expolnentlal, etc.) obsl - o
=
model ) e ¥ @ £ 20
| [ Initial N(D) Construct Sy (V= Wooppier: Tair) ConStruct Sgecon(V) 2
using (13) |—»| using (15) T 10
0
U ! (h)
Construct Compare Sy ¢o(V) With Syecon (V) 10
Shyaro(V) USING using cost function (16), (17), or
(11) & (12) (18)

l ()
Adjust N(D) |4~ Best Solution?

(min. cost
function?)

Final N(D)
Estimate Dm, R

Height (km)

Fig. 2. Deconvolution method flow diagram.

_o

il LU R 1 - - e e i i
12 13 14 15 16 17 18 19 20 21 22 23 24
Hour of Day (UTC)

the spectra. While the spectral cost functions produce modefig. 3. Time-height cross section of radar reflectivity from the ver-
spectra that better represent the observed spectra, the mueally pointing 920-MHz profiler foa) 22 January an¢b) 23 Jan-

ment cost function is computationally faster. All three cost uary 2006 during TWPICE. The lines at 1.5 and 4.0 km indicate the
functions are described below. altitude range of DSD retrievals used in this study.

5.1 Spectral two-norm cost function

first three moments of the modeled and observed spectra and
In this study, the spectral two-norm cost function is definedis expressed as
as the sum of the squared difference between the modeled

and observed spectra at each velocity channel and is ex; _ |Zobs— Zmodel | {Vobs) — (Vmodel |
pressed as moment= Zobs (Vobs)
o — 0
Jyispectrg = Z (Sobs(vi) — Smodel(vi))z (16) +M (18)
i

GVobs

wherei represents only thg velocity channels with spectralwhere Zops and Zmodel are the reflectivity [dBZ] (zeroth
values larger than the noise level. The value/gfectrs  moment expressed in dBZ)Vobsy and (Vmoge) are the
is similar to ax? estimate used by Sato et al. (1990) and reflectivity-weighted mean Doppler velocity [mY (first

Schafer et al. (2002). moment), andry,,, andoy,, .., are the reflectivity-weighted
) Doppler velocity standard deviation [Ty (square root of
5.2 Spectral one-norm cost function the second moment) for the observed and modeled spectra,

. i respectively. Letting (v) denote either the observed or mod-
The spectral one-norm cost function is defined as the sum Ofeled spectrum, the reflectivity in units rim-3 is estimated

the absolute difference between the modeled and observelgsing
spectra at each velocity channel and is expressed as

J|spectra: Z | Sobs(Vi) — Smodel(vi)]. (17) 7= ]o S(v)dv (19)

The numerical benefit of the one-norm cost function over the

two-norm cost function is that outliers between the modelgng can be expressed in dBZ units using Eq. (2). The
and observation contribute less to the one-norm cost funcrefiectivity-weighted mean Doppler velocity is estimated us-
tion. Thus, the one-norm cost function is a more robust costng (williams, 2002)

function than the two-norm cost function (Aster et al., 2005).

o]

5.3 Moment cost function J vS()dv

. . Ny == (20)
While the spectral cost functions involve every spectral point 7? S(v)dv
above the noise level, the moment cost function uses only the e
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10 a. 50-MHz Profiler Spectral Density, 20:04 UTC b. 920-MHz Profiler Spectral Density, 20:04 UTC c. Reflectivity

"

rdBZ/ms”
A 40

Air Motion

Altitude (km)

(Upward) DopplerVeIocity(ms’1) (Downward) (Upward) DopplerVeIocity(ms'l) (Downward) (dBZ)

Fig. 4. Simultaneous vertical profiles of reflectivity-weighted Doppler velocity spectral density [units of dBZl()ﬁ%] on 23 January

2006 at 20:04 UTC fofa) the 50-MHz profiler andgb) the 920-MHz profiler. The ambient air motion is estimated from the Bragg scattering
component in the 50-MHz profiler spectra (indicated in panel a). The first and second moments of the Bragg scattering component are
indicated with asterisks and horizontal linegpppertoair) on the 920-MHz profiler spectra in (b). The DSD is estimated from the Rayleigh
scattering component of the 920-MHz profiler spectra shown in (b). The solid black lines labeled “1 mm”, “3 mm”, and “6 mm” indicate the
air density adjusted terminal fall speeds of raindrops with diameters of 1, 3, and 6 mm, respectively.

And the reflectivity-weighted Doppler velocity standard de- The time-height cross sections of reflectivity for the two
viation is estimated using (Williams, 2002) rain events on 22 and 23 January 2006 used in this study are
shown in Fig. 3. Both rain events had radar brightband sig-

}" v — (V)2S(v)dv v natures near 4.5 km indicative of stratiform rain. Near 15:50
50 and 18:20 UTC on 23 January (Fig. 3b), the reflectivity struc-
ov = ) : (21) ture did not contain a brightband as convective rain elements
[ S)dv passed over the profiler site.
—0o0

Examples of reflectivity-weighted Doppler velocity spec-

tra observed by the two profilers while precipitation was di-

rectly over the profiler site on 23 January 2006 at 20:04 UTC
6 Radar observations during TWPICE are shown in Fig. 4. Figure 4a was derived from the 50-

MHz profiler and Fig. 4b and ¢ were derived from the 920-
Vertically pointing profiling radar observations were col- pHz profiler. The colored panels in Fig. 4a and b show
lected in January and February 2006 during the Tropicakhe reflectivity-weighted Doppler velocity spectral density
Warm Pool — International Cloud Experiment (TWP-ICE) S50_mHz(v) and Sg20_mHz (v)=Sobs(v) in units of 10logo
around Darwin, Australia. The experiment provided both (mmf m—3)/(ms-1)) at each range gate. The logarithmic
remote sensing observations and aircraft in-situ measurescale is used to aid in visualizing data that spans six orders
ments within anvil clouds which are needed to verify the of magnitude. The 920-MHz profiler reflectivity is shown in
microphysical properties inferred by ground-based remoterig. 4c and has units of dBZ.
sensing instruments. For this study, the Doppler velocity The advantage of using the 920-MHz operating frequency
spectra collected by the collocated 50-MHz and 920-MHZraqar is that the radar is sensitive to backscattered energy
profiling radars were used to estimate the vertical air mo-from hard targets distributed throughout the radar pulse vol-
tion and the vertical profile of rain drop size distributions yme. Referring to the colored panel of Fig. 4b, the 920-MHz
(DSDs). The long wavelength 50-MHz profiler observations profiler Doppler spectra show particles with net downward
are used to estimate the vertical Doppler motigppierand  motion below the freezing level, which is located around
the turbulent broadeningsir as the precipitation passed di- 4.5km. The solid black lines in the colored panels indicate
rectly over the profiler site. The shorter wavelength 920-the air-density—corrected terminal fall speeds of raindrops

MHz profiler observations provided the observed reflectivity- yith diameters of 1-, 3-, and 6-mm estimated using Eq. (12).
weighted Doppler velocity spectigyps(v) used to estimate

the DSD.
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Fig. 5. Retrieved(a) reflectivity, (b) mean diameteb,,,, and(c) rain rate for each of the 42 DSD retrievals and at each of the 25 range gates
for 22 January 2006 at 13:55 UTC. The Marshall-Palmer (MP) DSD model retrievals are shown with circles and all other DSD models are
shown with pluses. The MP solutions are over-constrained for this data set and pioguared R that are not consistent with the other
retrievals. MP DSD models are not used in any of the ensemble statistics.

The 50- and 920-MHz profilers operated with a coordi- These 42 DSD estimates constitute one ensemble and were
nated scan strategy so that both radars were observing vertiermed using seven different DSD models (see Sect. 2),
cally for the first 45 s of every minute. The first valid range two different numerical inverse model methodologies (see
gate for the 50-MHz profiler was 1.5km above the ground Sect. 4), and three different cost functions (see Sect. 5). In
and each range gate was separated by 315m. The 920-MHhis study, all ensembles are studied independently of alti-
profiler operated with 105 m range gate spacing, and the 25ude, time, and rain regime to evaluate the statistical proper-
range gates between 1.5 and 4 km were used in this studyies of the ensemble retrieval methodology.
which is high enough to have valid 50-MHz profiler vertical
air motion estimates (1.5km) and low enough to avoid thez 1 Filtering outliers
radar brightband (4.5 km). To account for the different verti-
cal resolution of the two profilers, the 50-MHz profiler ver-
tical air motion estimates at 315m vertical resolution were
interpolated to the 920-MHz profiler 105 m resolution. Sys-
tem parameters for both profilers are listed in Table 1.

Before the statistical properties of the ensemble retrieval
methodology can be evaluated, outliers need to be filtered
from each ensemble. The DSD estimates at each altitude
were visually examined for each profile to search for con-
sistent biases in the retrievals. A typical profile is shown in
Fig. 5 with the 42 DSD estimates of reflectivity, mean rain-
7 Ensemble statistics drop diameter, and rain rate for each range gate shown in
three separate panels. The six Marshall-Palmer DSD Model
For each simultaneous 50- and 920-MHz radar observation(MP) retrievals are shown with circles and all other DSD
42 different raindrop size distributions (DSDs) were esti- Models are shown with pluses. Note that for this profile, the
mated at each of the 25 range gates between 1.5 and 4 knlMP mean raindrop diametd»,, is consistently less than the
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a. Histogram and Percent Accumulation of mean Diameter, <D >, Total CNT: 26725
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Fig. 6. Panel(a) shows the histogram afD,,) occurrence for all 26 725 ensembles as a function of retri¢igg) (solid line) and the

percent accumulation from 0 to 100% (dashed line). Pé@nedhows the histogram ef{D,,} for the small range of #5< (D) <1.55 mm.

Panel (b) also shows the percent accumulation from 0 to 100% of these 2474 ensembles in this sub-set. The values of the 10th, 50th, anc
90th percentiles are indicated in the two panels.

Table 1. Operating parameters of the Darwin 50- and 920-MHz profilers (V is vertical, E is east, and N is north).

Parameter 50-MHz Profiler 920-MHz Profiler

Scan sequence V(455s), E(155s), V(455s), N(15s) V(455s), E(155s), V(455s), N(155s)
Height resolution  315m 105m

Height coverage  1.5-20km 200 m-12km

Beamwidth 3 9°
other DSD Models, and the MP rain rakeis consistently Bias:} Xn: (Desgimate_<D >_> (22)
greater than the other DSD Models. n & i i

These biases occurred with nearly every profile during the estimate . . :
two rain events and th®,, bias for each DSD estimate rel- Where D,%"“*is a particular DSD estimate and,,); is
ative to the ensemble mean is shown in Table 2. The 42he ensemble mean using all 42 DSD estimates for édch
DSD estimates are shown in Table 2 with the seven rowsobservation. The MP DSD modd),, is biased low rela-
corresponding to the DSD models and the six columns corretive to the ensemble mean for all six numerical methods by
sponding to the two numerical model methods and the thre@t least 0.4 mm. Thi®),, underestimate leads to a rain rate
cost functions. The bias for each DSD estimate is defined usover estimate. Th®,, bias indicates that the constraints of

ing all n observations from both rain events and determinedthe MP DSD Model which were derived using mid-latitude
using stratiform rain events are not appropriate for DSD estimates

for these two tropical rain events observed near Darwin, Aus-
tralia. Due to the inconsistency of the MP retrievals, the
six MP DSD Models were eliminated from the ensemble
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a. Histogram and Percent Accumulation of mean Rain Rate, <R>, Total CNT: 26725
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Fig. 7. Panel(a) shows the histogram @iR) occurrence for all 26 725 ensembles as a function of retrieRédsolid line) and the percent
accumulation from 0 to 100% (dashed line). Pahgkhows the histogram of{ R} for the small range of #5<(R)<1.55 mm 1. Panel (b)

also shows the percent accumulation from 0 to 100% of these 562 ensembles in this sub-set. The values of the 10th, 50th, and 90th percentile
are indicated in the two panels.

database, leaving a maximum number of 36 members in eacbual inspection suggests that thB,,) histogram is quasi-
ensemble. symmetric and the uniform distribution of the 10, 50 and
It is understood that with the ensemble modeling 90 percentiles with values of 0.9, 1.5, and 2.1 mm supports
paradigm, not all models produce realistic results for everya quasi-symmetric histogram. The bottom panel of Fig. 6
situation. Therefore, the remaining 36 mean raindrop diam-shows the histogram and percent accumulatior ab,, }
eterD,, and 36 rain rat&k estimates for each ensemble were for a sub-set of 2474 ensembles that hai®,) between
screened for outliers using a two-step filter. First, the me-1.45 and 1.55 mm. While visually, the{ D,,} histogram ap-
dian and standard deviation &, andR (D, R, o{Dy}, pears asymmetric with more larger values than smaller val-
ando {R}) were estimated for each ensemble of 36 DSD esti-ues, quantitatively, the 10th, 50th, and 90th percentile values
mates. The second step removed all DSD estimates that wegse nearly uniformly distributed with values of 0.05, 0.10,
either outside the bounds @,,+20{D,,} or R + 25 {R}, and 0.14 mm, suggesting a quasi-symmetric distribution.
or greater tharR+2R. After this two-step filter, all ensem- The histogram and percent accumulation(&f for all
bles with less than 28 members were eliminated from the26 725 ensembles are shown in the top panel of Fig. 7. Both
database, leaving a total of 26 725 independent ensembledsual inspection and the non-uniform spacing between the

each with at least 28 DSD estimates. 10th, 50th, and 90th percentiles @) indicate that the rain
rate histogram is asymmetrical. The bottom panel in Fig. 7
7.2 Statistical measures of the ensembles shows the histogram and percent accumulation {@t} for

the small interval of R) between 1.45 and 1.55 mmh The
After each ensemble was filtered to remove outlier DSDstrong asymmetry of the{R} histogram is identified both
estimates, the mean and standard deviatioDgfand R visually and by the non-uniform percentiles (0.04, 0.08, and
were estimated for each ensemb{®y), o {D,,}, (R), and 0.32mmh1). This implies that Gaussian statistics, which
o{R}). The top panel of Fig. 6 shows the histogram bf,) include estimates of the mean and standard deviation, can-
and the percent accumulation for all 26 725 ensembles. Vinot be used to describe the distributiorogiR} for this small
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Table 2. Bias of D, for each DSD estimate relative to the ensemble mean (see Eq. 22). Each row corresponds to a DSD model (described
in Sect. 2) with the model equation shown in the parentheses. Each column corresponds to a numerical inverse method (described in Sect. 4
and a cost function (described in Sect. 5).

DSD model (Eq. #) Convolution method Deconvolution method
Jispectrg  Jispectra  Jmoment Jyspectrdg  Jispectra Jmoment
Gamma (5) 0.031 0.033 0.029 -0.003 0.005 0.045
Exponential (6) —-0.103 -0.093 —-0.056 -0.124 -0.123 -0.039
Marshall-Palmer @ —0.485 —-0.527 —0.467 —-0.516 —-0.560 —0.527
Gamma withu=2.5 5) 0.060 0.050 0.061 0.038 0.021 0.072
Gamma withu=5 (5) 0.128 0.112 0.138 0.100 0.082 0.148
Constrained Gamma (9) 0.031 0.034 0.021 0.025 0.029 0.008
Log-Normal (20) 0.152 0.144 0.078 0.133 0.125 0.108

interval of (R). Therefore, the uncertainty @¢RR) is quan- 8 Conclusions
tified using the 10th, 50th, and 90th percentiles¢R} for

small intervals of(R). For consistency in the analysis, un- Before radar estimates of the raindrop size distribution
certainties in(D,,) will also be quantified using the 10th, (psD) can be assimilated into numerical weather predic-
50th, and 90th percentiles off D,,} for each small interval  tjon models, the retrieved DSD must include both the esti-
of (D), even though the frequency distributions are quasi-mated precipitation parameter (i.e., reflectivity, mean mass-
Gaussian in shape. weighted diameter, rain rate) and an estimate of the uncer-
tainty. The ensemble methodology enables the DSD un-
certainty to be estimated by measuring the spread in DSD
retrievals that use the same observations as inputs but use
ifferent retrieval methodologies to estimate the DSD. The
SD retrieval methodologies are dependent on how the DSD
is modeled, how the numerical inversion method is imple-
mented, and how the cost function is defined to determine
the “best” solution.

7.3 Uncertainties for small ranges ofD,, and R

Due to the non-linear and non-Gaussian distribution of en-
semble statistics discussed in the previous section, estimalz
ing the uncertainty iD,, andR requires estimating the 10th,
50th, and 90th percentiles ef{ D,,} ando {R} for small in-
tervals of(D,,) and(R). In particular, for each small inter-
val of (D,,) or (R), the corresponding population efD,,}
ando {R} are sorted to estimate the 10th, 50th, and 90th per- In this study, seven different DSD models were used to
centiles ofo{D,,} ando{R}. Figure 8 shows the 10th-to- mathematically describe the raindrop size distribution and
90th percentile ranges plus the 50th percentile valuéfgy included a Gamma distribution, an exponential distribution,
ranging from 0.4 to 2.7 mm in 0.1 mm intervals (top panel) @ Marshall-Palmer distribution, constapt=2.5 and u=5

and for (R) ranging from 0.0 to 2.3 mmtt in 0.1 mmtrt Gamma distributions, a Gamma distribution constrained us-

intervals (bottom panel). The 50th percentile is shown foring au—Dy, relationship, and a log-normal distribution. The
each(D,,) and(R) with the horizontal bar in both panels. convolution method and deconvolution method were the two
The smallesD,, uncertainty occurs fofD,,) between 0.8 numerical inversion methods used in this study. And, three
and 1.8 mm and the 90th percentile is less than 0.15 mm an@0st functions were used to compare the observations and
the median value is less than 0.11 mm. The uncertainty in‘nodels and included two point-by-point cost functions and
creases for small and largéb,,) values, which is consis- ©One moment cost function. For each set of radar observa-
tent with the simulations performed by Schafer et al. (2002).tions, 42 different DSD estimates were generated to form
The uncertainty ofR increases with(R). While the 90th ~ one ensemble. The retrieved DSDs were parameterized by
percent”e uncertainty approaches 0.6 mn‘H rDr 2mm I*rl the I‘efleCtiVity, maSS'Weighted mean diamdﬂ-;‘,[, and rain
rain rate (30% relative error), the median uncertainty is lesgateR.
than 0.15mmh? at this rain rate (less than 8% relative er- By comparing the 42 DSD parameters of reflectividy,,
ror). The non-uniform spacing between the rain rate 10th,and R at each range gate for every profile during two rain
50th and 90th percentiles highlights the non-linear rain rateevents, it was determined that the Marshall-Palmer (MP)
error between the different retrieval methodologies. DSD model produced DSD parameters with), too small
andR too large compared with the other DSD models. Note
that the MP DSD is a special case of an exponential shaped
DSD with Ny fixed to a value and the slope dependent on
the rainrate (see Eqg. 7 and Marshall and Palmer, 1948).
These biases were observed for nearly every profile and
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Fig. 8. Panel(a) shows the 10th-to-90th percentile ranges ¢D,, } for 0.1 mm intervals of D,;,). The median value for eagtD,,) interval
is shown with a horizontal line. Pan) shows the 10th-to-90th percentile ranges¢R} for 0.1 mm L intervals of(R) along with the
median value shown with a horizontal line.

were independent of range gate suggesting that the MP DSBponds to a relative error of less than 15%. The uncer-
model, which was developed using mid-latitude stratiformtainty increases for smaller and largeb,,) values. The
rain events, was not appropriate for these tropical rain eventsuncertainty ofR increases withR). While the 90" per-
Therefore, the MP DSD model runs were eliminated from thecentile uncertainty approaches 0.6 mmfior 2mm 1 rain
ensemble database. After removing outliers from individualrate (30% relative error), the median uncertainty is less than
ensembles, 26 725 ensembles were used in this study with &.15 mm ir® at this rain rate (less than 8% relative error).
least 28 DSD estimates in each independent ensemble.

In order to estimate the uncertainty of thg, andR esti-  AcknowledgementsThis work was supported in part by the
mates, small intervals of meah,, and meanR ((D,,) and NASA Tropical Rainfall Measuring Mission (TRMM) and Pre-

. e . .__Cipitation Measurement Mission (PMM) programs (award number
(R)) were identified, and the spread in the Corresr)OndlngNNXO?AN?QG), and in part by NOAAs contribution toward the

o{Dn} ando {R} were studied in def[ail. The histograms of NASA PMM program. The Darwin 50-MHz profiler is owned and
o{Dn} ando{R} were not symmetric which prevented the qerated by the Australian Bureau of Meteorology (BOM). The

use of Gaussian statistics (estimates of mean and standagshrwin 920-MHz profiler was owned by NOAA and is maintained
deviation) to describe the histograms and to describe the urand operated by BOM.

certainties ofD,, andR. Therefore, the 10th, 50th, and 90th Topical Editor U.-P. Hoppe thanks two anonymous referees for
percentiles ofo{D,,} and o {R} were used to describe the their help in evaluating this paper.
uncertainty ofD,, andR for small intervals ofD,, andR.
The smallestD,, uncertainty occurs foKkD,,) between
0.8 and 1.8 mm and the 90th percentile is less than 0.15mm
which corresponds to a relative error of less than 20%. The
median value ob{D,,} was less than 0.11 mm and corre-
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