Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 27, issue 5
Ann. Geophys., 27, 2035-2044, 2009
https://doi.org/10.5194/angeo-27-2035-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 12th International Symposium on Equatorial Aeronomy...

Ann. Geophys., 27, 2035-2044, 2009
https://doi.org/10.5194/angeo-27-2035-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  05 May 2009

05 May 2009

Stormtime dynamics of the global thermosphere and equatorial ionosphere

W. J. Burke1,2, C. Y. Huang1, and R. D. Sharma1 W. J. Burke et al.
  • 1Space Vehicles Directorate, Air Force Research Laboratory, Hanscom AFB, MA, USA
  • 2Institute for Scientific Research, Boston College, Chestnut Hill, MA, USA

Abstract. During magnetic storms the development of equatorial plasma bubbles (EPBs) and distributions of thermospheric densities are strongly influenced by the histories of imposed magnetospheric electric (εM) fields. Periods of intense EPB activity driven by penetration εM fields in the main phase are followed by their worldwide absence during recovery. A new method is applied to estimate global thermospheric energy (Eth) budgets from orbit-averaged densities measured by accelerometers on polar-orbiting satellites. During the main phase of storms Eth increases as long as the stormtime εM operates, then exponentially decays toward quiet-time values during early recovery. Some fraction of the energy deposited at high magnetic latitudes during the main phase propagates into the subauroral ionosphere-thermosphere where it affects chemical and azimuthal-wind dynamics well into recovery. We suggest a scenario wherein fossils of main phase activity inhibit full restoration of quiet-time dayside dynamos and pre-reversal enhancements of upward plasma drifts near dusk denying bottomside irregularities sufficient time to grow into EPBs.

Publications Copernicus
Special issue
Download
Citation
Share