Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 27, issue 4 | Copyright
Ann. Geophys., 27, 1573-1582, 2009
https://doi.org/10.5194/angeo-27-1573-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  02 Apr 2009

02 Apr 2009

Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data

N. A. Tsyganenko N. A. Tsyganenko
  • Institute of Physics, Saint-Petersburg State University, Saint-Petersburg 198504, Russia

Abstract. A detailed statistical study of the magnetic structure of the dayside polar cusps is presented, based on multi-year sets of magnetometer data of Polar and Cluster spacecraft, taken in 1996–2006 and 2001–2007, respectively. Thanks to the dense data coverage in both Northern and Southern Hemispheres, the analysis spanned nearly the entire length of the cusps, from low altitudes to the cusp "throat" and the magnetosheath. Subsets of data falling inside the polar cusp "funnels" were selected with the help of TS05 and IGRF magnetic field models, taking into account the dipole tilt and the solar wind/IMF conditions. The selection funnels were shifted within ±10° of SM latitude around the model cusp location, and linear regression parameters were calculated for each sliding subset, further divided into 10 bins of distance in the range 2≤R≤12 RE, with the following results. (1) Diamagnetic depression, caused by the penetrated magnetosheath plasma, becomes first visible at R~4–5 RE, rapidly deepens with growing R, peaks at R~6–9 RE, and then partially subsides and widens in latitude at the cusp's outer end. (2) The depression peak is systematically shifted poleward (by ~2° of the footpoint latitude) with respect to the model cusp field line, passing through the min{|B|} point at the magnetopause. (3) At all radial distances, clear and distinct peaks of the correlation between the local By and By(IMF) and of the corresponding proportionality coefficient are observed. A remarkably regular variation of that coefficient with R quantitatively confirms the field-aligned geometry of the cusp currents associated with the IMF By, found in earlier observations.

Publications Copernicus
Download
Citation
Share