Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year
    1.614
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.900 SNIP 0.900
  • IPP value: 1.58 IPP 1.58
  • SJR value: 0.910 SJR 0.910
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 80 Scimago H
    index 80
  • h5-index value: 24 h5-index 24
Volume 27, issue 4
Ann. Geophys., 27, 1509-1520, 2009
https://doi.org/10.5194/angeo-27-1509-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 12th International Symposium on Equatorial Aeronomy...

Ann. Geophys., 27, 1509-1520, 2009
https://doi.org/10.5194/angeo-27-1509-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

  02 Apr 2009

02 Apr 2009

The equatorial E-region and its plasma instabilities: a tutorial

D. T. Farley D. T. Farley
  • School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA

Abstract. In this short tutorial we first briefly review the basic physics of the E-region of the equatorial ionosphere, with emphasis on the strong electrojet current system that drives plasma instabilities and generates strong plasma waves that are easily detected by radars and rocket probes. We then discuss the instabilities themselves, both the theory and some examples of the observational data. These instabilities have now been studied for about half a century (!), beginning with the IGY, particularly at the Jicamarca Radio Observatory in Peru. The linear fluid theory of the important processes is now well understood, but there are still questions about some kinetic effects, not to mention the considerable amount of work to be done before we have a full quantitative understanding of the limiting nonlinear processes that determine the details of what we actually observe. As our observational techniques, especially the radar techniques, improve, we find some answers, but also more and more questions. One difficulty with studying natural phenomena, such as these instabilities, is that we cannot perform active cause-and-effect experiments; we are limited to the inputs and responses that nature provides. The one hope here is the steadily growing capability of numerical plasma simulations. If we can accurately simulate the relevant plasma physics, we can control the inputs and measure the responses in great detail. Unfortunately, the problem is inherently three-dimensional, and we still need somewhat more computer power than is currently available, although we have come a long way.

Publications Copernicus
Special issue
Download
Citation
Share