Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year
    1.614
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.900 SNIP 0.900
  • IPP value: 1.58 IPP 1.58
  • SJR value: 0.910 SJR 0.910
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 80 Scimago H
    index 80
  • h5-index value: 24 h5-index 24
Volume 26, issue 2
Ann. Geophys., 26, 231-241, 2008
https://doi.org/10.5194/angeo-26-231-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 3rd European Space Weather Week (ESWW)

Ann. Geophys., 26, 231-241, 2008
https://doi.org/10.5194/angeo-26-231-2008
© Author(s) 2008. This work is distributed under
the Creative Commons Attribution 3.0 License.

  26 Feb 2008

26 Feb 2008

Nonlinear solar cycle forecasting: theory and perspectives

A. L. Baranovski1,*, F. Clette1, and V. Nollau2 A. L. Baranovski et al.
  • 1Royal Observatory of Belgium, Brussels, Belgium
  • 2Dresden University of Technology, Institute for Mathematical Stochastics Dresden, Germany
  • *now at: Center for Information Services and High Performance Computing, Dresden University of Technology, Dresden, Germany

Abstract. In this paper we develop a modern approach to solar cycle forecasting, based on the mathematical theory of nonlinear dynamics. We start from the design of a static curve fitting model for the experimental yearly sunspot number series, over a time scale of 306 years, starting from year 1700 and we establish a least-squares optimal pulse shape of a solar cycle. The cycle-to-cycle evolution of the parameters of the cycle shape displays different patterns, such as a Gleissberg cycle and a strong anomaly in the cycle evolution during the Dalton minimum. In a second step, we extract a chaotic mapping for the successive values of one of the key model parameters – the rate of the exponential growth-decrease of the solar activity during the n-th cycle. We examine piece-wise linear techniques for the approximation of the derived mapping and we provide its probabilistic analysis: calculation of the invariant distribution and autocorrelation function. We find analytical relationships for the sunspot maxima and minima, as well as their occurrence times, as functions of chaotic values of the above parameter. Based on a Lyapunov spectrum analysis of the embedded mapping, we finally establish a horizon of predictability for the method, which allows us to give the most probable forecasting of the upcoming solar cycle 24, with an expected peak height of 93±21 occurring in 2011/2012.

Publications Copernicus
Special issue
Download
Citation
Share