Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 25, issue 3
Ann. Geophys., 25, 779–784, 2007
https://doi.org/10.5194/angeo-25-779-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 25, 779–784, 2007
https://doi.org/10.5194/angeo-25-779-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.

  29 Mar 2007

29 Mar 2007

VisAn MHD: a toolbox in Matlab for MHD computer model data visualisation and analysis

P. Daum P. Daum
  • Department of Communication Systems, Lancaster University, LA1 4WA Lancaster, UK

Abstract. Among the many challenges facing modern space physics today is the need for a visualisation and analysis package which can examine the results from the diversity of numerical and empirical computer models as well as observational data. Magnetohydrodynamic (MHD) models represent the latest numerical models of the complex Earth's space environment and have the unique ability to span the enormous distances present in the magnetosphere from several hundred kilometres to several thousand kilometres above the Earth surface. This feature enables scientist to study complex structures of processes where otherwise only point measurements from satellites or ground-based instruments are available. Only by combining these observational data and the MHD simulations it is possible to enlarge the scope of the point-to-point observations and to fill the gaps left by measurements in order to get a full 3-D representation of the processes in our geospace environment. In this paper we introduce the VisAn MHD toolbox for Matlab as a tool for the visualisation and analysis of observational data and MHD simulations. We have created an easy to use tool which is capable of highly sophisticated visualisations and data analysis of the results from a diverse set of MHD models in combination with in situ measurements from satellites and ground-based instruments. The toolbox is being released under an open-source licensing agreement to facilitate and encourage community use and contribution.

Publications Copernicus
Download
Citation