Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 25, issue 2
Ann. Geophys., 25, 557–568, 2007
https://doi.org/10.5194/angeo-25-557-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 25, 557–568, 2007
https://doi.org/10.5194/angeo-25-557-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.

  08 Mar 2007

08 Mar 2007

Beam effect on electromagnetic ion-cyclotron waves with general loss – cone distribution function in an anisotropic plasma-particle aspect analysis

G. Ahirwar, P. Varma, and M. S. Tiwari G. Ahirwar et al.
  • Department of Physics & Electronics, Dr. H. S. Gour University, Sagar, (M.P.) 470003, India

Abstract. The effect of upgoing ion beam and temperature anisotropy on the dispersion relation, growth rate, parallel and perpendicular resonant energies, and marginal instability of the electromagnetic ion cyclotron (EMIC) waves, with general loss-cone distribution function, in a low β homogeneous plasma, is discussed by investigating the trajectories of the charged particles. The whole plasma is considered to consist of resonant and non-resonant particles. The resonant particles participate in an energy exchange with the waves, whereas the non-resonant particles support the oscillatory motion of the waves. The effects of the steepness of the loss-cone distribution, ion beam velocity, with thermal anisotropy on resonant energy transferred, and the growth rate of the EMIC waves are discussed. It is found that the effect of the upgoing ion beam is to reduce the energy of transversely heated ions, whereas the thermal anisotropy acts as a source of free energy for the EMIC waves and enhances the growth rate. It is found that the EMIC wave emissions occur by extracting energy of perpendicularly heated ions in the presence of an upflowing ion beam and a steep loss-cone distribution function in the anisotropic magnetoplasma. The effect of the steepness of the loss-cone is also to enhance the growth rate of the EMIC waves. The results are interpreted for EMIC emissions in the auroral acceleration region.

Publications Copernicus
Download
Citation