Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 25, issue 1 | Copyright
Ann. Geophys., 25, 293-302, 2007
https://doi.org/10.5194/angeo-25-293-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.

  01 Feb 2007

01 Feb 2007

Effects of a moving X-line in a time-dependent reconnection model

S. A. Kiehas1,2, V. S. Semenov3, I. V. Kubyshkin3, Yu. V. Tolstykh3, T. Penz1,2,*, and H. K. Biernat1,2 S. A. Kiehas et al.
  • 1Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria
  • 2Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria
  • 3Institute of Physics, State University, St. Petersburg, 198504 Russia
  • *now at: INAF Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, Palermo, Italy

Abstract. In the frame of magnetized plasmas, reconnection appears as an essential process for the description of plasma acceleration and changing magnetic field topology. Under the variety of reconnection regions in our solar system, we focus our research onto the Earth's magnetotail. Under certain conditions a Near Earth Neutral Line (NENL) is free to evolve in the current sheet of the magnetotail. Reconnection in this region leads to the formation of Earth- and tailward propagating plasma bulges, which can be detected by the Cluster or Geotail spacecraft. Observations give rise to the assumption that the evolved reconnection line does not provide a steady state behavior, but is propagating towards the tail (e.g., Baker et al., 2002). Based on a time-dependent variant of the Petschek model of magnetic reconnection, we present a method that includes an X-line motion and discuss the effects of such a motion. We focus our main interest on the shock structure and the magnetic field behavior, both for the switch-on and the switch-off phase.

Publications Copernicus
Download
Citation
Share