Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 25, issue 7
Ann. Geophys., 25, 1603–1615, 2007
https://doi.org/10.5194/angeo-25-1603-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 25, 1603–1615, 2007
https://doi.org/10.5194/angeo-25-1603-2007
© Author(s) 2007. This work is distributed under
the Creative Commons Attribution 3.0 License.

  30 Jul 2007

30 Jul 2007

CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric Alfvén resonator

M. Rother1, K. Schlegel2, and H. Lühr1 M. Rother et al.
  • 1GeoForschungsZentrum Potsdam, Germany
  • 2Max-Planck-Institute for Solar System Research (formerly MPAE Lindau), Katlenburg-Lindau, Germany

Abstract. Bursts of very intense kilometer-scale field-aligned currents (KSFACs) are observed quite frequently by the CHAMP satellite when passing through the auroral region. In extreme cases estimated current densities exceed 3 mA/m². Typical scale sizes of these KSFACs are 1 km.

The low-Earth, polar orbiting satellite CHAMP allows one to assess KSFACs down to scales of a couple of 100 m based on its high-precision magnetic field vector data sampled at 50 Hz. Using data from 5 years (2001–2005) details of these currents can be investigated. In our statistical study we find that most of the KSFAC bursts and the strongest events are encountered in the cusp/cleft region. Significantly fewer events are found on the nightside. The affected region is typically 15°–20° wide in latitude. There seems to be some dependence of the current intensity on the level of magnetic activity, Kp. On the other hand, no dependence has been found on sunspot number, the solar flux level, F10.7 or the solar zenith angle. The latitude, at which KSFAC bursts are encountered, expands equatorward with increasing Kp. This trend follows well the auroral oval expansion during enhanced magnetic activity. These KSFACs are generally accompanying large-scale FAC sheets, and they are predominantly associated with Region 1 currents. We propose an explanation of the KSFACs in terms of Alfvén waves trapped in a ionospheric resonator, which is initiated when the convection electric field or current strength surpasses a critical value. Many properties of such a resonator are in agreement with our KSFAC results.

Publications Copernicus
Download
Citation