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Abstract. This paper investigates the use ofnon-linearfunc-
tions in classical Kalman filter algorithms on the improve-
ment of regional weather forecasts. The main aim is the im-
plementation of non linear polynomial mappings in a usual
linear Kalman filter in order to simulate better non linear
problems in numerical weather prediction. In addition, the
optimal order of the polynomials applied for such a filter is
identified. This work is based on observations and corre-
sponding numerical weather predictions of two meteorologi-
cal parameters characterized by essential differences in their
evolution in time, namely, air temperature and wind speed. It
is shown that in both cases, a polynomial of low order is ade-
quate for eliminating any systematic error, while higher order
functions lead to instabilities in the filtered results having, at
the same time, trivial contribution to the sensitivity of the fil-
ter. It is further demonstrated that the filter is independent of
the time period and the geographic location of application.

Keywords. Meteorology and atmospheric dynamics
(Mesoscale meterology; Instruments and techniques)

1 Introduction

It is well known that Numerical Weather Prediction (NWP)
models usually exhibit systematic errors in the forecasts of
certain meteorological parameters especially near the sur-
face. This drawback is a result not only of the shortcom-
ing in the physical parameterization, but also of the inability
of these models to handle successfully sub-grid scale phe-
nomena. The model horizontal resolution associated with
smoothing/averaging the orographic and landscape charac-
teristics leads to weak representation of local effects on the
airflow (e.g. systematic underestimations in the wind speed).
Increasing the model resolution may provide considerable
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improvement in the representation of smaller scale flow char-
acteristics. Nevertheless, an open question remains as to
whether the use of higher resolution limited area models im-
proves the forecast skill considerably, while, even if this is
true, it is still uncertain whether such improvement compen-
sates for the usage of increasing computational resources re-
quired for these applications (Mass et al., 2002). In addition,
inaccuracies in the NWP model forecasts may also be due
to possible errors in the initial and lateral boundary condi-
tions as well as to interpolations to areas that are not close to
model levels.

In order to reduce the influence of the above mentioned
drawbacks in the final output of a NWP model, a variety of
approaches based on statistical methods has been used. Most
of them are derived from Model Output Statistics (MOS),
which are able to account for local effects and seasonal
changes. However, discrepancies have been found in MOS
applications in cases of short time local weather changes or
updates of the atmospheric model in use (see e.g. Landberg,
1994; Joensen et al., 1999).

One of the most successful approaches to this problem is
the use of Kalman filters (Kalman, 1960; Kalman and Bucy,
1961; Bossanyi, 1985; Persson, 1990; Dragulanescu, 1993;
Kalnay, 2002; Galanis and Anadranistakis, 2002; Crochet,
2004; Giebel, 2000). They consist of a set of mathematical
equations that provides an efficient computational solution of
the least square method. In practice, the Kalman filter is the
statistically optimal sequential estimation procedure for dy-
namic systems. Observations are recursively combined with
recent forecasts using weights that minimize the correspond-
ing biases.

The main advantage of this statistical methodology is
the easy adaptation to any alteration of the observations as
well as the fact that it may utilize short series of back-
ground information. Kalman filters can be widely used for
pure meteorological purposes as well as for several other
applications, e.g. wind power prediction (c.f. ANEMOS
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project1). The structure of Kalman filter algorithms is more
suitable to describe linear procedures. For this reason, their
application on meteorological parameters that follow a non-
linear or discontinuous behavior is always dubious.

The aim of this paper is twofold: At first, a new way for the
encapsulation of non linear polynomial functions in a classi-
cal linear Kalman filter algorithm is proposed. In this way,
a more convenient method for the description of the major
part of meteorological parameters is obtained. Thereafter, a
detailed study of Kalman filtering application to NWP data,
leading to the clarification of the optimum polynomial for
such type of simulations is illustrated. The results are based
on NWPs and observations of temperature and wind speed
obtained at two different locations in south Europe and for
different time periods. Further, the obtained optimal filter is
applied to a longer data set (of one year) for which the im-
provement of the direct model output is revealed.

2 Description of the methodology

This section initially describes the general form of a Kalman
filter using the unified notation proposed by Ide et al., 1997.
The main goal is the simulation of the evolution in time of an
unknown process (state vector), whose “true” value at timeti
is denoted here byxt (ti). A relevant known array (odberva-
tions)yO

i at the same time is also utilized. The change ofx
in time is described by:

xt (ti+1) = Mi[x
t (ti)] + η(ti) (1)

and the relation between the observation vector and the un-
known one is:

yO
i = Hi[x

t (ti)] + εi . (2)

The matricesMi (system operator) andHi (observation op-
erator) have to be determined before the application of the
filter. This is also the case for the covariance matrices Q(ti),
R(ti) of the Gaussian with zero mean (by assumption) and
independent random vectorsη(ti) (noise process) andεi .

The Kalman filter provides a method for the recursive es-
timation of the unknown state xt based on all observation
values yO up to timeti . A first (forecast) step of the state
vector and its error covariance matrix P, based only on the
previous’ time step analysis values, is given by:

xf (ti)=Mi−1[x
a(ti−1)], (3a)

P f (ti)=Mi−1P
a(ti−1)M

T
i−1 + Q(ti−1). (3b)

This is followed up by an update (analysis) step in which the
observation available at timeti is blended with the previous
information:

xa(ti) = xf (ti) + Ki(y
O
i − Hi[x

f (ti)]), (4a)

1http://anemos.cma.fr, http://forecast.uoa.gr/anemos/

P a(ti) = (I − KiHi)P
f (ti) (4b)

where

Ki = P f (ti)H
T
i [HiP

f (ti)H
T
i + Ri]

−1 (5)

is the Kalman gain that arranges how easily the filter adjusts
to possible new conditions. Note that the superscriptso, t ,
f , a denote observations, true, forecast and analysis value
correspondingly. Moreover,T , −1 denote the transpose and
the inverse matrix whileI stands for the unitary matrix.

Equations (1)–(5) update the Kalman algorithm from time
ti−1 to ti .

During the last years, Kalman filters of the above type have
been used for meteorological purposes and especially for im-
proving weather forecasts. However, the linear form of the
algorithm as well as the special type (non continuous in some
cases) of wind speed time series, are important drawbacks
for such applications on the prediction of wind parameters,
affecting significantly the final outcome. Therefore, while
the application of Kalman filters for the improvement of lo-
cal air temperature predictions seems, in most cases, to be
successful, analogous work for wind speed predictions may
lead to poor results. Some previous work on this subject can
be found in Bossanyi, 1985; Giebel, 2000.

Our approach is based on the non linear correction of fore-
cast bias using Kalman filters. In particular, it focuses on the
study of a single meteorological parameter in time, based on
the estimation of the bias of this parameter as a function of
the forecasting model direct output. Specifically, letmi de-
noting the direct output of the model at time ti referring on
one parameter (temperature or wind speed) that we estimate
at each case. Let alsoyO

i be the bias of this forecast. We
realize it by means ofmi as a polynomial:

yO
i = a0,i +a1,i ·mi +a2,i ·m

2
i + . . .+an−1,i ·m

n−1
i +εi, (6)

where the coefficients(aj,i), j=0,1,. . . ,n-1, are the parame-
ters that have to be estimated by the filter andεi the Gaus-
sian, non systematic, error of the previous procedure. Note
here thatyO

i , εi are scalar variables contrary to the general
case Eq. (2) where they are vectors.

We consider, in other words, as state vector
the one formed by the coefficients(aj,i), namely,

x(ti) =
[
a0,i a1,i a2,i . . . an−1,i

]T , as obser-
vation the (scalar here) biasyO

i , as observation matrix

Hi =

[
1 mi m2

i . . . mn−1
i

]
and as system matrix the

identity matrix In. In this way, the system and observation
equations take the following form:

xt (ti+1)=xt (ti)+η(ti), y
O
i =Hi[x

t (ti)]+εi . (7)

This estimation may be of a linear form by choosing as order
n=2, or a polynomial one of arbitrary degree. We succeed
in this way to study non linear procedures, and therefore to
improve the numerical predictions of several meteorological
parameters of non-linear behavior.
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The covariance matrices Q(ti), R(ti) are defined explicitly
in Sect. 3.

3 The optimal filter

The algorithm presented in the previous section offers the
advantage of employing non-linear functions for the elimina-
tion of the systematic error in the forecast of a specific me-
teorological parameter. Moreover, one can use any natural
number (at least theoretically) as the order of non-linearity,
increasing in this way the sensitivity of the filter. The ques-
tion then rising is: “To which extent the increase in the or-
der of the polynomial in use influences positively the perfor-
mance of the filter?”, in other words, “Is there an “optimum”
polynomial that ensures the maximum credibility of the fil-
ter?”

In this section the application of different order polynomi-
als is examined in order to extract the optimum order based
on the best performance of the filter in improving the NWP
data, in combination with the minimization of the required
CPU time. The NWP data used in this study were extracted
from SKIRON model (see Kallos, 1997; Papadopoulos et al.,
2001). SKIRON, based on the Eta model (Janjic, 1994), runs
operationally at the University of Athens providing 5-day
forecasts2. It is a full physics non-hydrostatic model with so-
phisticated convective, turbulence and surface energy budget
scheme. It has several unique capabilities making it appropri-
ate for regional/mesoscale simulations in regions with vary-
ing physiographic characteristics. SKIRON uses NCEP/GFS
meteorological data for initial and lateral boundary condi-
tions for operational purposes at a resolution of 1◦, and SST
(Sea Surface Temperature) data at a resolution of 0.5◦. Vege-
tation and topography data are applied at a resolution of 30′′

and soil texture data at 2′. The variance of the sub-grid scale
topography is also taken into account. The domain of the
model covers the entire Mediterranean region with a hori-
zontal increment of 0.1◦×0.1◦ (i.e. 10 km×10 km approxi-
mately), while 38 Eta levels are used in the vertical.

SKIRON NWP data of long time periods, i.e. at least
one month forecast of 5-days horizon, have been provided
for wind energy production purposes in the framework of
ANEMOS project. In particular, SKIRON forecasts, namely
wind speed and direction, air temperature and mean sea level
pressure, have been supplied for different locations in the
Mediterranean where wind farms operate. For the specific
case study, SKIRON NWP data, namely, air temperature at
2 m and wind speed at 10 m above the ground for the area
of Alaiz, Spain (grid point used: W 1.6◦, N 42.7◦, 672 m
above mean sea level), for December 2003 and for Rokas,
Crete (grid point used: E 26.2◦, N 35.2◦, 480 m above mean
sea level) for the whole year 2003 were available. At the
same time observations of temperature at 2 m and wind speed

2http://www.forecast.uoa.gr

at 55 m at Alaiz and at 40 m at Rokas were provided in
ANEMOS project. Kalman filtering was applied to the wind
speed at 55 m and 40 m as it is calculated from the model
forecasts at the nearest model levels (weighted interpolation).
Hereafter, Alaiz will refer to as Case I and Rokas as Case II.

The use of these extended time periods, apart from increas-
ing the credibility of the statistical analysis, ensures also that
the final performance of the proposed filters will not be se-
riously affected by the choice of the initial conditions. This
issue is also supported by the definition of all initial values
for filter parameters. More precisely, the initial value of the
state vectorx is zero, assuming, in this way, that the ini-
tial bias of the forecasting model in use is non-systematic:
yO

0 =ε0 Eqs. (6, 7). On the other hand, the covariance matrix
P (Eq. 3b) is considered initially diagonal, indicating trivial
correlations between different coordinates of the state vector
x. The diagonal elements have an initially relatively large

value, here we proposeP(t0) =


4 0 ... 0
0 4 ... 0
... ... ... ...

0 0 4

, that de-

clares low credibility of our first guess. Finally, the initial
values of the variancesQ(ti), R(ti) (Eqs. 3b, 5) areQ(t0)=In
(i.e. the identity matrix with dimension equal to the order
of the filter in use),R(t0)=6 (a sufficiently large estimation
leading to quick independence from initial conditions). The
selection of these values for the variables, leads also to an
initial Kalman gain that contributes to fast adaptability of the
filter to “any possible new conditions Eq. (5)”.

There is a long history of successful Kalman filter appli-
cations for air temperature (see e.g. Persson, 1990; Dragu-
lanescu, 1993). On the other hand, the non linear evolution in
time of wind speed sets under question the possibility of suc-
cessful application of classical Kalman filters. In the present
study the implementation of non linear functions in the clas-
sical (linear) Kalman algorithm made possible the simulation
of such type of time series.

A wide range of different forecast times is used in order to
avoid any possible forecasting time dependences. Our statis-
tical analysis was based on the:

– Bias of forecasted (filtered or not) values:

Bias=
1

k
·

k∑
i=1

(for(i)−obs(i)), (8)

where obs(i) denotes the recorded (observed) value at time
i, for(i) the respective forecasted value (direct model output
or improved forecast via the proposed filter) andk the size
of our sample. Bias is a crucial parameter for Kalman filter-
ing. Any type of Kalman methods aims at eliminating the
standard error and, thus, at vanishing the corresponding bi-
ases. The fulfillment of this requirement is the main criterion
ensuring the credibility of the filter.

– Absolute Bias:
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Fig. 1.  Bias and Absolute Bias of direct model outputs and Kalman filtered results for (a) temperature 
and (b) wind speed, based on different time intervals for the estimation of variance matrices (3, 7, 15 
and 30 days)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Bias and Absolute Bias of direct model outputs and Kalman filtered results for(a) temperature and(b) wind speed, based on different
time intervals for the estimation of variance matrices (3, 7, 15 and 30 days)

Table 1. Biases of direct model output and Kalman filters – Case I.
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TABLE 1.  Biases of direct model output and Kalman filters – Case I 
 

Temperature 

Forecast period Model Kal 1Kal 2Kal 3Kal 4 Kal 5Kal 6 Kal 7 Kal 8 Kal 9 Kal 10

T+24 h 2.47 0.32 -0.01 -0.05 0.10 0.19 0.56 0.46 0.66 0.37 1.06 

T+48 h 2.30 0.29 0.12 0.08 0.24 0.38 0.32 0.15 0.43 1.29 0.68 

T+72 h 2.55 0.33 0.07 -0.19 0.05 -0.02 0.54 0.39 1.12 0.54 1.13 

T+96 h 2.68 0.41 -0.09 -0.07 0.30 0.11 0.18 0.26 0.15 0.35 1.24 

T+120 h 3.41 0.23 0.00 -0.05 0.08 0.09 0.71 0.74 0.01 0.82 0.45 

Average 2.68 0.32 0.02 -0.06 0.15 0.15 0.46 0.40 0.47 0.67 0.91 

Wind Speed 

Forecast period Model Kal 1Kal 2Kal 3Kal 4 Kal 5Kal 6 Kal 7 Kal 8 Kal 9 Kal 10

T+24 h -0.47 -0.64 -0.40 -0.53 -0.43 -0.27 -1.10 -0.25 -0.77 -1.04 -1.35

T+48 h -0.59 -0.23 -0.22 -0.06 0.44 0.52 0.62 0.49 0.48 1.02 0.92 

T+72 h -0.97 0.08 -0.07 0.23 0.50 0.69 0.59 -0.08 -0.11 -0.34 -0.85

T+96 h -0.98 0.36 0.16 0.29 0.12 0.04 0.20 -0.90 -0.45 -2.94 -2.49

T+120 h -1.50 -0.29 -0.58 -0.28 -0.31 -0.51 -0.75 -1.25 -1.90 -0.90 -1.90

Average -0.90 -0.14 -0.22 -0.07 0.06 0.09 -0.09 -0.40 -0.55 -0.84 -1.13

 

 

 

 
Absolute Bias=

1

k
·

k∑
i=1

|for(i)−obs(i)| (9)

where| | denotes the absolute value. This parameter assesses
the real improvement in the model predictions despite any
possible changes in the type of errors.

– Standard deviation of the bias:

Table 2. Absolute Biases of direct model output and Kalman filters
– Case I.

 28

 

 

TABLE 2.  Absolute Biases of direct model output and Kalman filters – Case I 
 

Temperature 

Forecast period model Kal 1Kal 2Kal 3Kal 4 Kal 5 Kal 6Kal 7 Kal 8 Kal 9 Kal 10

T+24 h 3.02 1.54 1.19 1.33 1.35 1.52 1.77 1.97 2.20 2.31 3.03 

T+48 h 2.92 1.40 1.40 1.42 1.51 1.55 1.73 2.34 2.36 2.92 3.53 

T+72 h 3.11 1.43 1.21 1.41 1.80 1.69 2.15 1.88 2.57 2.57 2.46 

T+96 h 3.05 1.56 1.21 1.56 1.54 1.50 1.48 1.79 1.86 1.90 2.67 

T+120 h 3.72 1.48 1.19 1.28 1.30 1.38 1.98 2.10 1.52 2.23 1.90 

Average 3.16 1.48 1.24 1.40 1.50 1.53 1.82 2.02 2.10 2.39 2.72 

Wind Speed 

Forecast period model Kal 1Kal 2Kal 3Kal 4 Kal 5 Kal 6Kal 7 Kal 8 Kal 9 Kal 10

T+24 h 2.36 2.43 2.48 2.53 2.81 2.77 3.08 2.91 3.84 3.48 4.49 

T+48 h 2.79 2.86 2.68 2.67 2.80 2.67 2.62 2.84 3.22 3.50 4.66 

T+72 h 3.22 3.18 2.94 3.05 2.83 3.02 2.97 3.08 3.86 3.88 4.80 

T+96 h 3.41 2.96 2.77 2.74 2.71 2.64 2.95 3.33 3.27 5.44 4.65 

T+120 h 3.80 3.67 3.57 3.74 3.76 4.11 4.20 4.84 6.93 5.62 4.63 

Average 3.12 3.02 2.89 2.95 2.98 3.04 3.16 3.40 4.22 4.38 4.65 

 

 

 

 

St. Dev. of Bias=

√√√√1

k
·

k∑
i=1

((for(i)−obs(i)) −Bias)2 (10)
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and of the absolute bias:

St. Dev. of Absolute Bias=

√√√√1

k
·

k∑
i=1

(|for(i)−obs(i)| −(Absolute Bias))2 (11)

are used as indexes that estimate the variability of the results.
The variancesQ(ti), of the system equation, andR(ti), of

the observation equation, are based on the sample of the last
7 values ofη(ti)=xt (ti+1) − xt (ti) andεi=yO

i −Hi[x
t (ti)]

respectively :

Q(ti) ≡

1

6
·

6∑
i=0

(((xt (ti+1)−xt (ti))−(

6∑
i=0

(xt (ti+1)−xt (ti))

7
)))2, (12)

R(ti) ≡

1

6
·

6∑
i=0

(((yO
i −Hi[x

t (ti)])−(

6∑
i=0

(yO
i −Hi[x

t (ti)])

7
)))2. (13)

The latter are objective estimators ofQ(ti), R(ti) respec-
tively since the variablesη(ti) and εi , denoting the non-
systematic part of errors in Eq. 7, follow the normal distri-
bution by assumption.

The time period for the estimation of variances was de-
termined to 7 days after a series of tests which led to the
conclusion that this short time interval is adequate to obtain
significantly improved forecasts with the application of the
filter. On the other hand, this choice allows fast adaptability
to possible data alternations and, at the same time, does not
create needs for extended data storage.

A part of these tests is presented in Fig. 1, where the fil-
ter has been used for a period of 1 year based on different
time intervals for the estimation of variance matrices: 3, 7,
15 and 30 days for both meteorological parameters in study
(temperature and wind speed). The results indicate that no
other choice leads to significantly improved results.

Additionally, this is supported by the results of absolute
bias presented in Tables 2 and 4 for Cases I and II, respec-
tively. The significant reduction of the absolute bias for the
Kalman filters of order of two to four ensures that the dis-
crepancy between the two time series (observed and fore-
casted) has been considerably decreased despite any possible
changes in the type of error.

Tables 1 and 3 present the overall performance of the
Kalman filter based on the bias using polynomials of first
to tenth order against the model direct output for both ar-
eas of application. More precisely, Table 1 refers to Case I
for December 2003 and Table 3 contains the results for Case
II for the period March to May 2003 (this 3-month period

Table 3. Biases of direct model output and Kalman filters – Case II.
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TABLE 3.  Biases of direct model output and Kalman filters – Case II 
 

Temperature 

Forecast period model Kal 1Kal 2Kal 3Kal 4 Kal 5 Kal 6Kal 7 Kal 8 Kal 9 Kal 10

T+24 h 0.37 0.39 0.08 -0.05 -0.03 -0.08 -0.01 0.78 -0.36 0.74 0.17 

T+48 h 0.46 0.22 -0.08 -0.13 -0.09 -0.07 -0.99 0.58 0.82 1.01 0.45 

T+72 h 0.56 0.29 -0.08 -0.10 -0.02 -0.23 0.16 -0.24 -0.25 0.15 -0.14

T+96 h 0.31 0.33 0.00 0.03 0.07 -1.49 -0.27 0.08 0.29 0.77 -0.55

T+120 h 0.28 0.39 -0.18 -0.23 -0.06 0.23 0.01 -0.95 0.20 -0.71 0.15 

Average 0.40 0.32 -0.05 -0.10 -0.03 -0.33 -0.22 0.05 0.14 0.39 0.02 

Wind Speed 

Forecast period model Kal 1Kal 2Kal 3Kal 4 Kal 5 Kal 6Kal 7 Kal 8 Kal 9 Kal 10

T+24 h -2.03 -0.12 -0.14 -0.26 -0.23 -0.20 -0.25 -0.07 -0.08 -0.36 -0.31

T+48 h -2.23 -0.07 -0.09 -0.13 -0.14 -0.01 0.33 0.02 -0.63 -0.62 -0.60

T+72 h -2.33 -0.07 -0.10 -0.05 -0.04 -0.24 -0.63 -0.19 -0.44 -0.20 -0.60

T+96 h -2.64 0.03 -0.14 -0.19 -0.12 -0.23 -0.64 -0.07 -0.46 -0.73 -1.16

T+120 h -3.17 -0.17 -0.26 -0.32 -0.34 -0.38 -0.25 0.06 -0.46 -0.98 -0.90

Average -2.48 -0.08 -0.15 -0.19 -0.17 -0.21 -0.29 -0.05 -0.41 -0.58 -0.71

 

 

 Table 4. Absolute Biases of direct model output and Kalman filters
– Case II.
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TABLE 4.  Absolute Biases of direct model output and Kalman filters – Case II 
 

Temperature 

Forecast period model Kal 1Kal 2Kal 3Kal 4 Kal 5 Kal 6Kal 7 Kal 8 Kal 9 Kal 10

T+24 h 1.62 1.34 0.86 0.90 0.88 0.91 2.54 3.58 6.52 5.74 5.25 

T+48 h 1.77 1.42 0.91 0.99 1.02 1.25 2.66 3.58 6.88 7.37 4.29 

T+72 h 1.81 1.46 0.90 0.98 0.99 1.19 1.99 3.53 5.01 6.31 6.82 

T+96 h 1.78 1.37 0.94 0.99 1.07 3.12 1.67 4.04 4.48 5.84 5.34 

T+120 h 2.12 1.49 1.07 1.07 1.07 1.36 1.89 4.82 5.36 6.23 6.34 

Average 1.82 1.42 0.94 0.99 1.01 1.57 2.15 3.91 5.65 6.30 5.61 

Wind Speed 

Forecast period model Kal 1Kal 2Kal 3Kal 4 Kal 5 Kal 6Kal 7 Kal 8 Kal 9 Kal 10

T+24 h 2.76 1.74 1.72 1.80 1.83 1.84 2.00 2.55 5.03 4.44 7.72 

T+48 h 3.11 1.91 1.82 1.87 2.11 2.03 2.72 2.88 4.62 4.33 5.05 

T+72 h 3.31 1.99 1.91 2.04 2.05 2.08 2.77 2.97 4.85 3.86 5.28 

T+96 h 4.11 2.49 2.45 2.48 2.59 2.53 2.77 3.52 3.17 5.21 6.94 

T+120 h 4.43 2.50 2.52 2.55 2.65 2.76 3.25 4.52 5.06 5.21 6.52 

Average 3.54 2.13 2.08 2.15 2.25 2.25 2.70 3.29 4.55 4.61 6.30 
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Fig. 2.  Time series of the (a, c) air temperature and (b, d) wind speed observed, forecasted and 
Kalman filtered for different forecasting hours with four different polynomials 
 

 

Fig. 2. Time series of the(a), (c) air temperature and(b), (d) wind speed observed, forecasted and Kalman filtered for different forecasting
hours with different polynomials.
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Fig. 3.  Percentage of instabilities resulting by remarkably increased values of coefficients for different 
Kalman filter polynomials in a time series of one year for air temperature and wind speed 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Percentage of instabilities resulting by remarkably increased
values of coefficients for different Kalman filter polynomials in a
time series of one year for air temperature and wind speed.

have been selected for investigating which the optimum filter
is. This period was covering the spring time which is char-
acterized by variable weather giving, thus, the opportunity
to study the behaviour of the filter under different forecast
situations). The bias concerns the data from all five differ-
ent forecasting periods of SKIRON. The results imply that
a Kalman filter of order oftwo to four for both air tempera-
ture and wind speed is the optimal choice for all forecasting

periods. In all cases the corresponding bias is close to zero
suggesting that the main goal of a Kalman-type filter is ful-
filled.

Any attempt to use higher order polynomials, even by re-
stricting the corresponding Kalman gain, does not lead to an
additional improvement of the sensitivity of the filter. On the
contrary, several instabilities in the corresponding time se-
ries emerge (see Fig. 2), and the overall performance of the
filter seems to deviate from its optimum values. These insta-
bilities, resulting in remarkably increased coefficients of the
models in use (i.e.aj,i of Eq. (6) obtain values greater than
100), are presented in Fig. 3 as a percentage of the total num-
ber of outputs. This figure shows the analysis of the 120 h
forecast cycle for temperature and the 72 h forecast cycle
for wind speed. It is obvious that any polynomial of degree
greater than 5 leads to a large percentage of instabilities. This
is further supported in Figs. 4 and 5 where the bias and abso-
lute bias refer to all available data (covering any forecasting
period) and all different types of Kalman filter. Moreover,
the standard deviation of the bias is significantly increased in
the cases of filters of order higher than 4 (see Fig. 6), a fact
providing further support to the above remarks.

Based on these results, a third order polynomial Kalman
filter is selected as the optimum one which was proven to
eliminate the systematic error from both air temperature and
wind speed predictions. The consistency of the performance
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Fig. 4.  Bias and absolute bias of (a) temperature and (b) wind speed for model and different Kalman 
filters outputs (Case I) 
 

Fig. 4. Bias and absolute bias of(a) temperature and(b) wind speed for model and different Kalman filters outputs (Case I).
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Fig. 5.  Bias and absolute bias of (a) temperature and (b) wind speed for model and different Kalman 
filters outputs (Case II) 
 

Fig. 5. Bias and absolute bias of(a) temperature and(b) wind speed for model and different Kalman filters outputs (Case II).

of this optimum filter is assessed for a longer time period of
one year (2003) using the same statistical analysis.

Figures 7 to 9 focus on the variation of bias, absolute bias
and standard deviation of bias of the direct model output and
the Kalman filtered output (of order three) with the forecast-
ing period for both air temperature and wind speed. Apart
from the obvious improvement in the final forecast, it is
worth noticing that this positive influence remains invariant,
or even improves, with the forecast time.

The time series illustrated in Fig. 2 further support the sig-
nificant improvement in the model output due to the appli-
cation of Kalman filtering based on low order polynomials
for both air temperature and wind speed. It is obvious that
the systematic error is eliminated regardless its type (under-
estimation or overestimation). On the other hand, the use of
a higher order Kalman filter gives better results only in iso-
lated cases, while it creates considerable instabilities when
the type of bias is alternated. Note that the cases presented in

Fig. 2 are characteristic and representative of the general case
since similar results appeared in several different selections
of the polynomial order.

4 Conclusions

A new methodology of implementing non-linear polyno-
mial functions in the classical linear Kalman filter algorithms
is proposed. Different order polynomials were examined,
based on time series of two meteorological parameters with
different type of behavior, namely the air temperature and
the wind speed. The former has a long history of successful
compatibility with Kalman filters, while the non continuous
evolution in time of the latter may lead to important draw-
backs. Our methodology showed high performance for both
cases at low computational cost. More precisely, this study
suggests that:
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Fig. 6.  Standard deviation of bias for temperature and wind speed for model and different Kalman 
filters outputs in (a) Case I and (b) Case II 
 

Fig. 6. Standard deviation of bias for temperature and wind speed for model and different Kalman filters outputs in(a) Case I and(b) Case
II.
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Fig. 7.  Variation of (a) temperature and (b) wind speed bias with forecast time for the direct model 
output and after the application of order-3 Kalman filter, for the year 2003 
 

Fig. 7. Variation of(a) temperature and(b) wind speed bias with forecast time for the direct model output and after the application of order-3
Kalman filter, for the year 2003.

– A low order polynomial, of second to fourth order,
seems to be the optimal choice that guarantees the suc-
cessful elimination of any type of standard bias (linear
or not) strongly contributing, in this way, to a successful
final forecast.

– Higher order polynomials do not increase the sensitivity
of the Kalman filter in use, while they require increased
CPU time. Moreover, they create, in several cases, in-
tense discontinuities in the filtered forecast.

The credibility of the proposed method gives the opportunity
for further use and applications. In this way, it can be im-
plemented in the main forecast model as a post-processing
method or it can be activated in certain time intervals during
the integration, smoothing any possible temporary disconti-
nuity that a rapid change in the time series could produce. It

could be also exploited as a pre-processing method provided
that an operational observation network is available.

On the other hand, there is a wide range of potential appli-
cations beyond the traditional meteorological use, e.g. wind
energy predictions and forest-fire fighting operations as well
as image processing.
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Fig. 8.  Variation of (a) temperature and (b) wind speed Absolute Bias with forecast time for the direct 
model output and after the application of order-3 Kalman filter, for the year 2003 
 

Fig. 8. Variation of(a) temperature and(b) wind speed Absolute Bias with forecast time for the direct model output and after the application
of order-3 Kalman filter, for the year 2003.
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Fig. 9.  Variation of (a) temperature and (b) wind speed Standard Deviation of Bias with forecast time 
for the direct model output and after the application of order-3 Kalman filter, for the year 2003 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Variation of (a) temperature and(b) wind speed Standard Deviation of Bias with forecast time for the direct model output and after
the application of order-3 Kalman filter, for the year 2003.
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