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Abstract. The magnetic structure and geomagnetic response
of 73 magnetic clouds (MC) observed by the WIND and ACE
satellites in solar cycle 23 are examined. The results have
been compared with the surveys from the previous solar cy-
cles. The preselected candidate MC events were investigated
using the minimum variance analysis to determine if they
have a flux-rope structure and to obtain the estimation for
the axial orientation (θC, φC). Depending on the calculated
inclination relative to the ecliptic we divided MCs into “bipo-
lar” (θC<45◦) and “unipolar” (θC>45◦). The number of ob-
served MCs was largest in the early rising phase, although
the halo CME rate was still low. It is likely that near solar
maximum we did not identify all MCs at 1 AU, as they were
crossed far from the axis or they had interacted strongly with
the ambient solar wind or with other CMEs. The occurrence
rate of MCs at 1 AU is also modified by the migration of the
filament sites on the Sun towards the poles near solar maxi-
mum and by the deflection of CMEs towards the equator due
to the fast solar wind flow from large polar coronal holes near
solar minimum. In the rising phase nearly all bipolar MCs
were associated with the rotation of the magnetic field from
the south at the leading edge to the north at the trailing edge.
The results for solar cycles 21–22 showed that the direction
of the magnetic field in the leading portion of the MC starts
to reverse at solar maximum. At solar maximum and in the
declining phase (2000–2003) we observed several MCs with
the rotation from the north to the south. We observed unipo-
lar (i.e. highly inclined) MCs frequently during the whole
investigated period. For solar cycles 21–22 the majority of
MCs identified in the rising phase were bipolar while in the
declining phase most MCs were unipolar. The geomagnetic
response of a given MC depends greatly on its magnetic
structure and the orientation of the sheath fields. For each
event we distinguished the effect of the sheath fields and the
MC fields. All unipolar MCs with magnetic field southward
at the axis were geoeffective (Dst<−50 nT) while those with
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(emilia.huttunen@helsinki.fi)

the field pointing northward did not cause magnetic storms at
all. About half of the all identified MCs were not geoffective
or the sheath fields preceding the MC caused the storm. MCs
caused more intense magnetic storms (Dst<−100 nT) than
moderate magnetic storms (−50 nT≥Dst≥−100 nT).

Key words. Interplanetary physics (Interplanetary mag-
netic fields) – Magnetospheric physics (Solar wind-
magnetosphere interactions) – Solar physics, astrophysics
and astronomy (Flares and mass ejections)

1 Introduction

Manifestations of coronal mass ejections (CMEs) are fre-
quently observed in the solar wind near 1 AU and are com-
monly called interplanetary coronal mass ejections (ICMEs).
The term magnetic cloud (MC) is used to characterize an
ICME having a specific configuration in which the magnetic
field strength is higher than the average, the magnetic field di-
rection rotates smoothly through a large angle, and the proton
temperature is low,Burlaga et al.(1981); Klein and Burlaga
(1982); Gosling(1990). Because of the high magnetic field
strength and low proton temperatures MCs have values of
plasma beta significantly lower than 1. Near 1 AU MCs have
enormous radial sizes (0.28 AU), with an average duration of
27 h, an average peak magnetic field strength of∼18 nT and
the average solar wind speed 420 km/s,Klein and Burlaga
(1982); Lepping and Berdichevsky(2000). The expansion of
a MC produces strongly decreasing density and temperature
with the radial distance from the Sun and declining profiles
of speed, magnetic field and pressure,Burlaga and Behannon
(1982); Gosling(1990); Bothmer and Schwenn(1998). The
interaction with the ambient solar wind may prevent the ex-
pansion that leads to a smaller diameter and larger densities
and temperatures at 1 AU than in an average MC.Goldstein
(1983) first suggested that MCs are force-free magnetic field
configurations (∇×B=α(r)B).
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Fig. 1. The flux rope of type SWN showing the rotation of the
magnetic field vector from the south to the west at the MC-axis and
finally to the north at the trailing edge of the MC (Bothmer and
Rust, 1997).

A few years laterBurlaga(1988) showed that a constant
α describes satisfactorily the magnetic field changes when a
MC moves past a spacecraft. The constantα solution for
a cylindrical symmetric force-free equation was given by
Lundquist (1950):

BR = 0, BA = B0J0(αr), BT = HB0J1(αr), (1)

whereBR, BA and BT are the radial, axial and tangential
components of the magnetic field.B0 is the maximum of the
magnetic field strength,r is the radial distance from the axis,
α is a constant related to the size of a flux rope,J0 andJ1 are
Bessel functions andH=±1 defines the sign of the magnetic
helicity Elsässer(1958); Berger and Field(1984).

The four possible flux-rope configurations, as predicted
from Eq. (1), have been confirmed to occur in the solar
wind, Bothmer and Schwenn(1994); Bothmer and Schwenn
(1998). The axis of an MC (φC, θC) can have any orien-
tation with respect to the ecliptic plane and depending on
the observed directions of the magnetic field at the front
boundary, at the axis and at the end boundary eight flux
rope categories are often used to classify MCs,Bothmer and
Schwenn(1994); Bothmer and Schwenn(1998); Mulligan et
al. (1998):

– Bipolar MCs (low inclination),θC<45◦: Following the
terminology byMulligan et al. (1998) the MCs with
the axis lying near the ecliptic plane are called bipo-
lar, as theZ component of the terrestrial magnetic field
changes sign during the passage of an MC. Figure1,
adopted fromBothmer and Rust(1997), shows a sketch
of the flux rope category called SWN. In the SWN-type
MC the magnetic field vector rotates from the south (S)
at the leading edge to the north (N) at the trailing edge,
being westward (W) at the axis. Similarly, the three
other categories are SEN (E=east), NES and NWS.

– Unipolar MCs (high inclination),θC>45◦: The MCs
that have the axis highly inclined to the ecliptic are
called unipolar, as theZ-component has the same sign
during the MC. The magnetic field is observed to ro-
tate from the west (east) at the leading edge to the east

(west) at the trailing edge, pointing either south or north
at the axis. These changes correspond to the flux-rope
types: WNE, ESW, ENW and WSE.

When viewed by an observer looking towards the Sun (posi-
tive axis direction) the counterclockwise magnetic field ro-
tation is defined as right-handed (SWN, NES, ENW and
WSE types) and the clockwise rotation as left-handed (NWS,
SEN, WNE, and ESW types). The handedness can be de-
termined from the parametersH andφc with the formula,
C=sgn(sinφc)×H , such thatC=−1 is for a left-handed MC
andC=+1 is for a right-handed MC (Lynch et al., 2003).
The studies of MCs during different activity phases for so-
lar cycles 21–22 revealed systematic variations in the pre-
ferred flux rope types,Bothmer and Rust(1997); Bothmer
and Schwenn(1998); Mulligan et al. (1998): In the rising
phase of odd (even) solar cycles the magnetic field in MCs
rotates predominantly from the south to the north (from the
north to the south) and during the years of high solar activ-
ity both SN and NS type MCs are observed. Additionally,
Mulligan et al. (1998) found for the years 1979–1988 that
unipolar MCs were most frequently observed in the declin-
ing phase of the solar activity cycle. At solar minimum and
in the rising phase most MCs were bipolar.

MCs have been studied intensively since their discovery,
as they are important drivers of magnetic storms, e.g.Tsuru-
tani et al.(1988); Zhang et al.(1988); Gosling et al.(1991).
A magnetic storm is defined as a world wide depression in
the horizantal component of the magnetic field that is caused
by the enhanced ring current (Gonzalez et al., 1994). The
variations in the ring current are recorded by the 1-hDst in-
dex, e.g.Mayaud(1980). The key parameters that control the
solar wind magnetospheric coupling are the strength and the
direction of the interplanetary magnetic field (IMF). For ex-
ample, intense magnetic storms (Dst<−100 nT) are caused
by an IMF southward component stronger than 10 nT at least
for 3 h (Gonzalez and Tsurutani, 1987). Solar wind speed
and density also play a role in a formation of the ring cur-
rent, though their exact role is still controversial,Gonzalez
and Tsurutani(1987); Fenrich and Luhmann(1998); Wang
et al. (2003a). The geomagnetic response of a certain MC
depends greatly on its flux-rope structure, e.g.Zhang et al.
(1988); Bothmer(2003). In some cases MCs cause major
magnetic storms, for example, Bastille day storm on 15–16
June 2000 (Lepping et al., 2001) while in other cases the
magnetic field remains mainly northward during the MC and
no geomagnetic activity follows. A magnetic storm can also
be caused by the sheath of heated and compressed solar wind
plasma piled up in front of the CME ejecta (Tsurutani et al.,
1988).

In this study we have performed the first extensive survey
of the magnetic structure and the geomagnetic response of
MCs identified during solar cycle 23. The investigated pe-
riod covers the rising phase of solar activity (1997–1999),
solar maximum (2000) and the early declining phase (2001–
2003) when defined by the yearly sunspot number. The pur-
pose of this study is to examine whether the variations of the
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magnetic structure of MCs with solar activity found for the
previous solar cycles (21–22) hold true also for solar cycle
23. During the investigated period we have continuous solar
wind measurements at 1 AU from WIND and ACE space-
craft, providing a larger set of MCs than was available for
the previous solar cycles. We also present a detailed analysis
of the geomagnetic response of the MCs, distinguishing the
effect of sheath fields and MC fields as a storm drivers. The
properties of MCs during solar cycle 23 have been surveyed
by Lynch et al.(2003) andWu et al.(2003). TheLynch et
al. (2003) study covers only a three and one-half year pe-
riod and concentrates on the plasma composition of MCs.
The Wu et al. (2003) paper shortly summarizes the occur-
rence rate and geoeffects of MCs reported in the WIND list
at http://lepmfi.gsfc.nasa.gov/mfi/magcloud pub1.html. In
Sect. 2 we present the method to identify MCs from the solar
wind data and how the axial orientation was estimated. In
Sect. 3 we show statistical results and in Sect. 4 we discuss
the geoeffectiveness of MCs. In Sects. 5 and 6 we discuss
and summarize the results.

2 Identification of MCs and determination of their flux-
rope type

We have identified MCs using magnetic field and plasma
measurements from WIND (January 1997–February 1998)
and ACE (March 1998–December 2003). We first performed
a visual inspection of the data to find the candidate MCs. The
intervals of bidrectional streaming of solar wind suprather-
mal electrons (BDE) along magnetic field lines is often used
to identify MCs, as this feature is considered to represent
a closed magnetic field configuration (Bame et al., 1981;
Gosling, 1990). However, as the interpretation of the BDE
intervals is not unambiguous and BDE are present also in
ICMEs without the MC structure, we did not use them as a
MC signature. In this study the criteria to define an MC is
based on the smoothness of the rotation in the magnetic field
direction confined to one plane (see below). Additionally, we
required that an MC must have the average values of plasma
beta less than 0.5, the maximum value of the magnetic field
at least 8 nT and the duration at least 6 h. With the last two
criteria we wanted to remove the ambiguity in identifying
small and weak MCs. As a consequence, we are likely to
miss MCs that have been crossed far from the axis. There is
often a disagreement in the number of MCs identified in dif-
ferent studies because there is no unique and fully objective
way to identify an MC in the solar wind (discussion, for ex-
ample, in a poster by Shinde et al. at the fall AGU meeting,
2003).

All selected events were investigated by analyzing 1-h
magnetic field data with the minimum variance analysis
(MVA) ( Sonnerup and Cahill, 1967), where MCs are iden-
tified from the smooth rotation of the magnetic field vector
in the plane of the maximum variance (Klein and Burlaga,
1982). For MCs with durations of 12 h or less we performed
MVA using 5-min (WIND) or 4-min (ACE) averaged data.

The detailed description of the method is found in the ap-
pendix ofBothmer and Schwenn(1998). The MVA method
can be applied satisfyingly to the directional changes of the
magnetic field vector exceeding∼30◦. The large ratio of the
intermediate eigenvalueλ2 to the minimum eigenvalueλ3 in-
dicates that the eigenvectors are well defined. We required
that λ2/λ3 is greater than 2, based on the analysis ofLep-
ping and Behannon(1980). B∗

X, B∗

Y , andB∗

Z correspond to
the magnetic field components in the directions of maximum,
intermediate and minimum variance. The MVA analysis pro-
vides us with the estimation of the orientation of the MC axis
(φC , θC). θ andφ are the latitudinal and longitudinal an-
gels of the magnetic field vector in solar ecliptic coordinates;
θ=90◦ is defined northward andφ=90◦ is defined eastward.
The MC axis orientation corresponds to the direction of the
intermediate variance that is seen from Eq. (1) as the axial
component is zero at the boundaries of the MC. The radial
component corresponds to the minimum variance direction
and the azimuthal component corresponds to the maximum
variance direction. The boundaries of MCs were determined
by solar wind signatures (start of the smooth rotation of the
magnetic field vector, drop in plasma beta, and plasma and
field discontinuities) and by the eigenvalue ratio. In those
cases where the boundaries defined by the different signa-
tures disagreed we used the magnetic field rotation.

There are various other methods to model MCs.Lepping
et al.(1990) have developed an algorithm to fit the magnetic
field data to the Lundquist solution that reproduces well the
observed directional changes of the magnetic field but often
the magnetic field strength profile is not so well fitted. To
improve the results the kinematic effects, such as the expan-
sion and the assumptions of non-symmetric and non-force
free topologies are used in some models, e.g.Farrugia et al.
(1993); Marubashi (1997); Osherovich and Burlaga(1997);
Mulligan and Russell(2001); Hidalgo et al.(2002a); Hidalgo
et al.(2002b).

Figure 2 shows 1-h solar wind data and the calculated
plasma beta during two MCs, one having the axis perpen-
dicular to the ecliptic plane (left) and the other lying near the
ecliptic plane (right). The bottom part of Fig.2 shows the
rotation of the magnetic field vector in the plane of maxi-
mum variance and in the plane of minimum variance. Both
MCs are easily identified by the smooth rotation of the mag-
netic field direction, enhanced magnetic field magnitude and
low plasma beta. The unipolar MC was observed by ACE
on 19–21 March 2001. As seen from the Fig.2 this MC has
a flux-rope type WSE and the observed angular variation of
the magnetic field is left-handed. The MVA method gives the
eigenvalue ratioλ2/λ3=52, the angle between the first and
the last magnetic field vectorsχ=157◦, and the orientation
of the axis (φC , θC)=(133◦, −57◦). TheBz component was
southward almost during the whole passage of the MC (it
caused a magnetic storm with theDst minimum −165 nT).
The bipolar MC in Fig.2 was observed by ACE on 20–21
August 1998. It belongs to flux rope category SWN and is
right-handed. The MVA method gives the eigenvalue ratio
30,χ=177◦, and the orientation of the axis (φC , θC)=(113◦,

http://lepmfi.gsfc.nasa.gov/mfi/mag_cloud_pub1.html
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Fig. 2. Top part: Solar wind parameters during two MC events. Top to bottom: magnetic field strength, polar (Blat) and azimuthal (Blong)
angles of the magnetic field vector in GSE coordinate system, solar wind speed and plasma beta. Left: 19–22 March 2001. Right: 19–22
August 1998. Two solid lines indicate the interval of an MC. Bottom part: the rotation of the magnetic field vector in the plane of maximum
variance and in the plane of minimum variance. The diamond indicates the start of the rotation.

−16◦). For both MCs the hodograms show that in the plane
of maximum variance the magnetic field rotates smoothly
through a large angle and in the plane of minimum vari-
ance the magnetic field decreases/increases from about zero
to the minimum/maximum value of theB∗

Y -component and
then goes back to zero.

3 Statistical results on MCs

We have compared our statistical results to the results ob-
tained in several other studies during solar cycle 23 and the
previous solar cycles. The article, the period of the inves-
tigation, duration of the study in years (T), spacecraft used
(S/C), and the total number of identified MCs are summa-
rized in the Table 1.Bothmer and Rust(1997) andBothmer
and Schwenn(1998) identified MCs based on the minimum
variance analysis,Mulligan et al.(1998) identified and classi-
fied MCs using the visual inspection of the data whileLynch

et al.(2003) andWu et al.(2003)/WIND list used the least-
square fitting routine byLepping et al.(1990).

3.1 Magnetic cloud list

Table 2 presents the 73 MCs that we have identified from
ACE and WIND solar wind data during the seven-year pe-
riod (1997–2003). We have also included seven “cloud can-
didate” events for which the fitting with MVA was not suc-
cessful (e.g. the eigenvalue ratio<2 or the directional change
less than 30◦) or that had large values of beta throughout the
event. For example, 24–25 November 2001 and 23–24 May
2003 events exhibited very low plasma beta, but the orga-
nized rotation of the magnetic field was not observed. For
the first event the complex magnetic structure probably re-
sults from the interaction of multiple fast halo CMEs that
were detected by LASCO within a short time interval,Hut-
tunen et al.(2002b); Wang et al.(2003b).
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Table 1. Summary of the five previous studies we have compared our statistical results. InBothmer and Rust(1997) no duty cycle consid-
erations are made. InBothmer and Schwenn(1998) MCs were observed between 0.3–1 AU. TheWu et al.(2003) study covered the years
1996–2001. For 1995 and 2002 see the WIND magnetic cloud list.

study period T S/C MC

Bothmer and Rust(1997) 1965–1993 28 OMNI-data base 67
Bothmer and Schwenn(1998) December 1974–July 1981 6.7 Helios 1/2 45
Mulligan et al.(1998) 1979–1988 10 Pioneer Venus Orbiter 61
Lynch et al.(2003) February 1998–July 2001 3.5 ACE 56
Wu et al.(2003)/WIND list 1995–2002 8 WIND 71
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Fig. 3. Yearly number of observed MCs in our study(a), in Wu et al.(2003)/WIND list (b), and inLynch et al.(2003) (c), the yearly number
of departed full halo CMEs (black) and partial halo CMEs (white)(d), and yearly number of MCs given inMulligan et al.(1998) (e). Note
that inLynch et al.(2003) the year 2001 presents only 7 months data of (January–July). The circles show the yearly sunspot number. The
white portion in bars in (a) show the number of cloud candidate events. In (e) the years have been arranged to coincide with the years of
approximately the same solar cycle phase in (a)–(d).

3.2 Yearly magnetic cloud rate

The histograms in Fig.3 display the yearly number of MCs
identified in our study (Fig. 3a), inWu et al.(2003)/WIND
list (Fig. 3b), and given inLynch et al.(2003) (Fig. 3c). The
circles show the yearly sunspot number and in Fig. 3a the
white portions in bars show the “cloud candidate” events.
The fourth Fig. 3d shows the yearly number of full (an-
gular width=360◦) and partial (angular width>120◦) halo
CMEs as reported in the LASCO coronal mass ejection cat-
alogue(http://cdaw.gsfc.nasa.gov/CMElist). We have not
made analysis as to whether these CMEs were front- or back-
side, but numbers shown give a rough estimate of the yearly
changes in the number of CMEs that can encounter the Earth.
Figure 3e shows the yearly number of MCs inMulligan et al.

(1998). Note that in Fig. 3e we have arranged the time axis
so that the years corresponding to about the same solar cy-
cle phase coincide betweenMulligan et al.(1998) and other
studies.

Figure3a shows that we identified the largest number of
MCs (15) just after solar minimum in 1997. The number
of MCs was also high (13) in 1998 but there was a reduc-
tion to eight MCs in 1999. During solar maximum period
(2000–2001) the MC rate was high, after which the number
of identified MCs decreased. The yearly numbers given by
Wu et al.(2003) show a similar trend. In 1999 they identified
only four MCs.

(http://cdaw.gsfc.nasa.gov/CME_list)
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Fig. 4. Yearly distribution of left-handed (black) and right-handed
MCs (white).

Three of the MCs that are included in our list in 1999,
but not in the WIND list were observed during the period
when WIND was inside the magnetosphere (25 March, 21–
22 April, 16 November).Mulligan et al.(1998) observed a
steady increase in the yearly MC rate during the rising activ-
ity phase. They identified the largest number of MCs at solar
maximum (1979) and in the declining phase (1982). Con-
trary to our study and theWu et al.(2003) study,Lynch et al.
(2003) identified the largest amount of MCs (20) in 2000 and
in general the number of MCs is larger in their study. Almost
40% of all MCs in theLynch et al.(2003) list are not included
in our list. In comparison for the years 1997–2002 87% of
the MCs in the WIND list are included in our list. The dif-
ferences between the studies are due to the different criteria
to define MCs. For example,Lynch et al.(2003) have not
limited the magnetic field total rotation to any specific value,
whereas the total rotation of about∼30◦ is required in our
study.

The comparison of Figs.3a and d indicates that the full and
partial halo rate and the number of observed MCs at 1 AU are
not well correlated. For example, in 1997 LASCO observed
only 19 halo CMEs and 15 partial halo CMEs compared to
61 halo CMEs and 100 partial halo CMEs observed in 2000.
However, in 1997 more MCs were identified than in 2000.

Figure4 presents the yearly distribution of MCs between
left-handed and right-handed for the investigated period. In
total, we found 42 (58%) left-handed MCs and 31 (42%)
right-handed MCs.

3.3 Solar cycle variation of the magnetic structure of MCs

3.3.1 Left- and right-handed MCs

During 1999–2001 the left-handed MCs clearly outnum-
bered right-handed MCs. It is interesting to note that ac-
cording to Table 2 during this period in all (13) identified
SN-type MCs magnetic field pointed east at the axis, i.e. they
were left-handed. In 1997 and 2002 more right-handed MCs
were observed than left-handed MCs. The relative number
of left- and right-handed MCs obtained in this study is ap-
proximately in agreement with the previous studies: For 28
years of dataBothmer and Rust(1997) found that 52% of
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Fig. 5. Yearly number of MCs with magnetic field rotations from
the south to the north (black) and from the north to the south (white)
in our study(a) and in Mulligan et al. (1998) study (b). In (b)
the years have been arranged to coincide with the years of approxi-
mately the same solar cycle phase in (a).

MCs were left-handed and 48% right-handed.Bothmer and
Schwenn(1998) also identified an almost equal distribution:
51% left-handed and 49% right-handed MCs. In the set of
MCs identified byMulligan et al. (1998), 59% were right-
handed and 41% left-handed. For the three and one-half year
periodLynch et al.(2003) found 55% left-handed and 45%
right-handed MCs.

For the handedness of an MC there is no dependence on
the solar cycle phase. The equal distribution between left-
and right-handed MCs is expected over a time period of sev-
eral years because generally left-handed MCs originate from
the Northern Hemisphere and right-handed MCs from the
Southern Hemisphere,Bothmer and Schwenn(1994); Rust
(1994). This is based on the agreement of the field structure
of MCs with the magnetic structure of the associated fila-
ment. Bothmer (2003) investigated in detail the solar sources
of five MCs that are included in Table 2 (10–11 January
1997; 22 September 1997; 16–17 April 1999; 21–22 Febru-
ary 2000; 15–16 July 2000). All of these five MCs followed
the hemispheric rule. All front-side halo CMEs associated
with these MCs originated from magnetic structures overly-
ing polarity inversion lines and four of the five MCs were
associated with disappearing Hα filaments.

3.3.2 SN vs. NS MCs

The distribution of bipolar (θC<45◦) MCs between those
with the magnetic field rotation from the south to the north
(SN) and from the north to the south (NS) in our study (a)
and in theMulligan et al. (1998) work (b) is displayed in
Fig. 5. For the first three years of the investigated period
(1997–1999) all bipolar MCs, except two (16 May 1997 and
18 February 1999) had southward fields in the leading part.
The number of NS-type MCs increased during the last four
years of the study: In 2000 we identified four and in 2002
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three NS-type MCs. The start of the change in the lead-
ing polarity of MCs at solar maximum was also observed
by Bothmer and Rust(1997), Bothmer and Schwenn(1998)
andMulligan et al.(1998). As seen from Fig.5b (note the
arrangement of the years) during solar maximum and the de-
clining phase of solar cycle 21 (1978–1984) both SN and NS
type MCs were observed. The NS type MCs clearly domi-
nated the SN type MCs from solar minimum to the next solar
maximum (1985–1988).

3.3.3 Bipolar vs. unipolar MCs

Figures6 and7 display the changes in the axial inclination
of the MCs as a function of time between 1997 and 2003.
Figure6 shows the variation of the absolute value of the in-
clination angleθC and Fig.7 displays the yearly distribution
between unipolar (i.e.θC>45◦) and bipolar (θC<45◦) MCs
in our study (a) and in theMulligan et al.(1998) work (b).
MCs had a wide range of inclination angles (1◦

−78◦) and
the scatter in Fig.6 is large. The evolution of|θC | in time
and the distribution of MCs between bipolar and unipolar
in Fig. 7a reveal no systematic trend. We observed unipo-
lar MCs frequently in the declining phase (2001 and 2003),
but also during the rising activity phase (1997–1999) when
each year about 40% of all identified MCs were unipolar. In
2000 and 2002 most MCs were bipolar. During the three
years (1982–1984) of the late declining phaseMulligan et al.
(1998) observed 13 unipolar MCs (70%) compared to only
four unipolar MCs (21%) observed during the three years of
the rising phase (1986–1988).

3.4 Predicted travel times of MCs to 1 AU

We studied carefully the LASCO and EIT images to find pos-
sible solar causes for each MC event at 1 AU. As the earth-
ward coming CMEs appear as halos in the LASCO cororon-
agraph images their line-of-sight speed cannot be measured
directly and arrival times to 1 AU are hard to predict. For
halo CMEs the radial speed is inaccessible, but the expan-
sion speed can be determined. The method to determine the
expansion speed is described in dal Lago et al. (2003) and
Schwenn et al. (2005). Schwenn et al. (2005) measuredVexp
for 75 LASCO CMEs which they were able to uniquely as-
sociate with shock waves in the SOHO, ACE or WIND solar
wind data. For each CME-shock pair, the travel time (Tr ) to
1 AU was determined. The function

Ttr = 203.0 − 20.77 ln(Vexp) (2)

fits the data best. In our study we found a unique CME as-
sociation for 26 MCs for which we were able to measure the
expansion speed. We excluded many events that had a CME
association, but for which the EIT images did not show clear
front side activity. Also, in some cases there were multiple
CME candidates in a sufficient time window or for a single
CME no unique association at 1 AU could be defined.

Figure8 shows the travel times for MC leading edges (red
stars) and for shocks (blue stars) plotted vs. the halo ex-
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Fig. 7. Yearly number of bipolar (black) and unipolar (white) MCs
in our study(a) and inMulligan et al.(1998) (b). In (b) the years
have been arranged to coincide with the years of approximately
same solar cycle phase in (a).

pansion speed. The black dashed line indicates the calcu-
lated travel time from Eq. (2). A least-square fit curve of the
same functional form as Eq. (2) but with newly derived co-
efficients using travel times of 25 MC shocks in our study,
Ttr=236.7−25.94ln(Vexp) is indicated by the blue line. The
red line shows the same for CME-MC leading edge pairs,
Ttr=233.9−23.55ln(Vexp). The standard deviation is 11.4 h
for 26 CME-MC leading edge pairs, and 9.66 for 25 CME-
shock pairs in our study, while for the 75 shocks in? it was
14 h. The scatter in Fig. 8 is still substantial. One would
expect to find an improvement when the travel time of the
MC leading edge or shocks is used instead of the travel time
of all the uniquely CME associated shocks at 1 AU. A shock
is a larger scale structure than the CME driving it (Sheeley,
1985). When the shock-CME ejecta structure is cut at the
flanks where CME material is not present,Ttr is increased
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Fig. 8. Travel times for shocks (blue stars) and MC leading edges
(red stars) vs. halo expansion speed. The black dashed line gives the
least-squares fit for 75 CME-shock pairs in Schwenn et al. (2005).
Blue and red lines give the least-squares fit for 26 CME-shock and
CME-MC leading edge pairs in this study.

relative to the shock-CME structure that is cut near the cen-
ter. In this study we have correlated halo CMEs to MCs.
Thus, for all events the structure is cut relatively close to the
center (as otherwise they would not have been identified MCs
at all).

4 Geoeffectiveness of MCs

The geoeffectiveness of the identified as MCs was examined
using the 1-hDst index. Final values ofDst were available
for 1997–2002 and preliminary values were used for 2003. In
the figures presented in this section we also give the pressure
correctedDst (D∗

st ), where the contribution of the magne-
topause currents have been removed by using the equation in
Burton et al.(1975):

D∗
st = Dst − b

√
Pdyn + c, (3)

wherePdyn is the solar wind dynamic pressure and for con-
stantsb andc we have used valuesb=7.26 nT(nPa)1/2 and
c=11 nT derived by O’Brien and McPherron (200a). Fol-
lowing the classification byGonzalez et al.(1994) we de-
fined moderate storms to have theirDst minimum between
−50 nT and−100 nT and intense storms to have theDst min-
imum <−100 nT. We have taken into consideration whether
the storm was caused by southward fields embedded in the
MC part itself or by sheath fields. We defined the cause of
the storm as the structure (i.e. sheath or MC) during which
Dst reached 85% of its minimum for that particular storm.
Column 12 in Table 2 shows theDst minimum (if it is less
than−50 nT) for each MC. If the sheath caused the storm,
we have indicated it by “sh” and theDst minimum follows
in parentheses. We have excluded an event (9 June 1997)
that occurred in the recovery phase of the previous storm, as

the contribution of the MC fields to theDst behavior was not
clear. WhenDst had more than one depression before attain-
ing its minimum value, we used the definition described by
Kamide et al.(1998) to determine whether the event was in-
terpreted as a two-step magnetic storm or two separate mag-
netic storms: Assume that the magnitude of the firstDst de-
pression isA andDst recovers by an amountC before the
second depression. IfC/A>0.9, theDst decreases are clas-
sified as two separate magnetic storms.

Gonzalez et al.(1994) presented solar wind threshold val-
ues for moderate and intense storms: A moderate storm is
generated whenBz is less than−5 nT for more than 2 h, and
intense storms are caused by aBz less than−10 nT lasting
more than 3 h.Gonzalez and Tsurutani(1987) also required
that in order for an intense storm to be generated the solar
wind electric field (Esw) should be larger than 5 mV at least
for 3 h concurrently withBz<−10 nT.

4.1 MCs without storms

For 21 events out of a total of 72 neither the sheath nor the
MC caused theDst decrease below our storm limit. The
majority of the 21 MCs that did not cause a storm had low
magnetic field intensity or were N-type with no significant
southward fields in the sheath. The average peak of the mag-
netic field magnitude of all 73 MCs in our study was 18.6 nT
and the average of the maximum speed inside an MC was
477 km/s (for 70 MCs, as three events lacked solar wind mea-
surements). The average peak magnetic field for the 20 non-
geoeffective MCs was only 13.2 nT and the average speed
was slightly less than that for all MCs, 463 km/s. An exam-
ple of a non-geoeffective ENW-type MC on 22 September
1997 has been presented byBothmer(2003).

Three events from these 21 cases fulfilled theGonzalez et
al. (1994) threshold for a moderate storm: 15–16 July 1997;
3–4 August 1997 and 25 March 1999. The solar wind mea-
surements from WIND and the geomagnetic response for the
MC on 3–4 August 1997 are shown in Fig.9. The figures
show the magnetic field intensity,Bz component (in the GSM
coordinate system), solar wind electric field, dynamic pres-
sure, and theDst index (solid line) with the pressure cor-
rection (dashed line). The data have not been shifted to the
magnetopause. WIND was located at the GSE position of
(X,Y ,Z)=(80, 70, 12) RE and the time delay from WIND to
the magnetopause was about 20 min. The leading edge of
the MC arrived at WIND at 14:00 UT on 3 August. Within
the MC the magnetic field vector rotated from the south to
the north. The magnetic fieldZ-component was less than
−10 nT (with a minimum value−13 nT) for more than 4 h,
with concurrentlyEsw larger than 5 mV/m for about three
and one-half hours. This event even met the criteria for an
intense magnetic storm, butDst decreased only to−49 nT
(theD∗

st minimum also−49 nT).
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4.2 Sheath storms

In 16 cases theDst minimum of the storm was caused by
sheath fields preceding the MC. In six cases the following
MC had southward fields in the leading part. The SN-type
MC observed on 15–16 May 1997 had aBz less than−10 nT
for about three and one-half hours, with the minimum value
of −24 nT. This MC would have been geoeffective itself, but
during the sheathDst decreased to−100 nT, that is 87% of
the stormDst minimum of −115 nT that was reached only
four hours later. Thus, this was classified as a sheath storm
according to our definition. However, the contribution of the
magnetopause currents toDst was larger during the sheath
than during the MC, and the pressure correctedDst reached
its minimum already during the sheath (Liemohn et al, 2001).
MCs whose sheath region caused a storm had an average
peak magnetic field magnitude of 16.6 nT (slightly less than
the average value of all MCs). The average of the maximum
speed was 519 km/s, that is above the average for all MCs.
This is as expected, as the draping of the ambient interplan-
etary magnetic field about the CME in the sheath is more
efficient the larger the CME speed is relative to the ambient
plasma (Gosling and McComas, 1987).

Figure10 shows an example of an SN-type MC on 6–7
November 2000 whose sheath region caused an intense mag-
netic storm. The shock was observed at ACE on 6 November
at 09:08 UT. ACE is located near the L1 point∼220RE from
the Earth so the time delay from ACE to the magnetopause
was about 40 min. In the sheath the IMF was mainly south-
ward and caused theDst decrease to−159 nT (D∗

st −172 nT)
on 6 November at 22:00 UT. TheDst minimum was clearly
caused by the sheath fields as the front edge of the MC
reached the magnetopause on 6 November at 23:00 UT. In
the end of the sheath region the IMF turned northward and
Dst started to recover. A few hours later southward fields
in the leading part of the MC caused a second depression
of Dst . Before theDst minimum in the sheathBz was less
than−10 nT for nearly four hours with the minimum value
at−13 nT.

It is interesting to compare the interplanetary conditions
and geomagnetic responses between the events presented in
Figs.9 and 10. The magnitude and duration of southwardBz

before theDst minimum were comparable between these two
events. The solar wind speed was somewhat higher during
the 6–7 November 2000 sheath than during the 3–4 August
1997 MC, and the maximum of the solar wind electric field
were 8 mV/m and 6.5 mV/m, respectively. It seems quite
peculiar why theBz conditions shown in Fig.10 led to an
intense magnetic storm while those presented in Fig.9 did
not cause a storm at all. During southward IMF for the 3–4
August 1997 event the dynamic pressure was low (∼2 nPa)
while for the 6–7 November 2000 event the dynamic pressure
was up to 15 nPa. The relative change inD∗

st was 62 nT for
the 3–4 August 1997 event and 143 nT for the 6–7 November
2000 storm.
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Fig. 9. Solar wind parameters and geomagnetic indices for a 2-day
interval from 3–4 August 1997 measured by WIND. The figures
from top to bottom show magnetic field strength(a), magnetic field
Bz-component in the GSM coordinate system(b), solar wind dy-
namic pressure(c), solar wind electric field(d) and theDst index
(solid line) together with the pressure correctedDst (dashed line)
(e). Two solid lines indicate the interval of an MC.
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Fig. 10.Solar wind parameters and geomagnetic indices for a 3-day
interval from 6–8 November 2000 measured by ACE. The figures
from top to bottom are the same as in Fig. 9. The dashed line indi-
cates the shock and two solid lines indicate the interval of an MC.

4.3 Moderate and intense storms

Southward fields within the MC part itself caused 15 mod-
erate storms and 20 intense storms. On the average the geo-
effective MCs had a larger peak magnetic field magnitude
(21.7 nT) and the speed was of the same order as the aver-
age of all MCs (472 km/s). MCs on 15–16 July 2000 and
29–30 October 2003 that caused major magnetic storms and
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Fig. 11. Solar wind parameters and geomagnetic indices for a 2-
day interval from 20–21 November 2003 measured by ACE. The
figures from top to bottom are the same as in Fig. 9. The dashed
line indicates the shock and two solid lines indicate the interval of
the MC.
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Fig. 12. Measured and predictedDst development for 20–21
November 2003. The blue solid line is the 1-hDst index and the
purple dashed line isD∗

st . The green open circles show the pre-
dictedD∗

st using the O’Brien and McPherron (2000a) model and
the red stars the predictedD∗

st using theWang et al.(2003a) model.

had very intense magnetic fields, lacked solar wind measure-
ments.

The MC on 10–11 January 1997, seeBothmer (2003),
caused only a moderate storm (Dst minimum −78 nT), al-
thoughBz had values less than−10 nT (with the minimum
value −15 nT) for four and one-half hours, andEsw was
larger than 5 mV/m for more than six hours. The dynamic
pressure was low (2–4 nPa) during southward IMF. The 16–
17 April 1999 MC, seeBothmer (2003) and also the 16
November 1999 MC hadBz less than−10 nT longer than
3 h. During the 16–17 April 1999 eventEsw was larger than
5 mV for two and one-half hours and the 16 November 1999
event lacked solar wind measurements. They both caused
moderate storms (−91 nT and−79 nT).

It was shown byHuttunen and Koskinen(2004) that sheath
regions were the most important drivers of intense magnetic
storms during the period 1997–2002. However, three of
the four most intense magnetic storms associated with the

Dst decrease below−300 nT during the solar cycle 23 were
driven primarily by southward fields in an MC. These storms
were the “Bastille Day” storm on 15–16 July 2003, the first
of the “Halloween storms” on 29–30 October 2003 (the sec-
ond Halloween storm on 31 October 2003 was presumably
driven by sheath fields) and the storm on 20–21 November
2003. This is understandable because only within MCs the
southward magnetic field can obtain highest intensities.

4.3.1 20–21 November 2003 storm

Figure11shows an example of the intense magnetic storm on
20–21 November 2003 that was driven by southward fields in
MC. When defined byDst this was the most intense mag-
netic storm during the solar cycle 23. An interplanetary
shock was observed at ACE on 20 November at 07:27 UT.
In the sheath the magnetic field fluctuated from the south
to the north and initiated theDst decrease below−50 nT.
A very well-defined MC arrived at ACE on 20 November
at 11:00 UT. The calculated orientation of the MC’s axis
was (φC , θC)=(40◦, 71◦). The MC can be classified as the
flux-rope category ESW and the variation in the magnetic
field was right-handed. The magnetic fieldZ-component was
southward during the whole passage of the MC and the max-
imum of the magnetic field coincided approximately with the
minimum value ofBz. The magnetic field magnitude was ex-
ceptionally high, almost 60 nT, and the minimum value ofBz,
was−53 nT, was reached at 15:12 UT on 20 November, after
which the magnetic field vector rotated slowly back to zero.
Solar wind dynamic pressure was high inside the MC. South-
ward MC fields caused most of theDst decrease and the min-
imum value ofDst , −465 nT (D∗

st −479 nT), was reached at
20:00 UT on 20 November.

Figure 12 shows the predictedD∗
st development accord-

ing to the O’Brien and McPherron (2000a) andWang et al.
(2003a) models. The O’Brien and McPherron (2000a) model
assumes that the ring current injection and ring current decay
parameter are controlled by the solar wind electric field. The
Wang et al.(2003a) model is a modification of the O’Brien
and McPherron (2000a) model and includes the influence of
the solar wind dynamic pressure in the injection function and
the decay parameter.Wang et al.(2003a) predicts notably
well the magnitude of theD∗

st minimum while the O’Brien
and McPherron (2000a) model clearly underestimates the
D∗

st minimum (the O’Brien and McPherron (2000a) model is
adjusted toDst>−150 nT). Thus, it seems that for this storm
the solar wind dynamic pressure had an important contribu-
tion to the ring current development. This is also seen from
Fig. 11 asDst was further depressed by about 200 nT after
the magnetic field had turned less southward and the dynamic
pressure was increased to about 20 nPa.

The MC on 20–21 November was most probably caused
by a halo CME detected in LASCO images on 18 November
2003. The CME was first detected at the LASCO C2 field of
view at 08:50 UT. EIT images showed activity almost at the
center of the solar disk. Two M-class flares (M3.2 and M3.9)
occurred in the active region 501, located almost at the center
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Fig. 13.Solar wind parameters and geomagnetic indices for a 3-day
interval from 12–14 October 2000 measured by ACE. The figures
from top to bottom are the same as in Fig. 9.

of the solar disk (N00E18) at 07:52 UT and 08:31 UT. Addi-
tionally, Hα images show a disappearance of a large filament
structure south of the active region.

4.3.2 Main phase development

Kamide et al.(1998) suggested that the two-step develop-
ment of Dst that is present for more than 50% of intense
storms can be caused when southwardBz fields are present
both in the sheath and in the MC. For SN-type MCs the av-
erage time difference between theDst peaks was small (7 h)
because of the close spatial proximity of the sheath fields and
the southwardBz in the MC.

For NS-type MCs the separation between southwardBz

fields in the sheath and in the MC can be so large thatDst has
enough time to recover to non-storm values and two separate
magnetic storms follow. Figure13 shows an NS-type MC
that was observed by ACE during 13–14 October 2000. The
shock arrived at ACE at 21:36 UT on 12 October. The sheath
caused a moderate storm with theDst minimum−71 nT (D∗

st

−81 nT) on 13 October, 06:00 UT. The southwardBz in the
trailing part of the MC caused an intense storm, with the
Dst minimum was−107 nT (D∗

st −105 nT) on 14 October
15:00 UT. The time difference between the twoDst minima
was 34 h.

Another NS-type MC that caused two separate magnetic
storms occurred on 28–29 July 2000. The storm caused by
the sheath had theDst minimum of −51 nT (D∗

st −60 nT)
and 27 h later the MC caused aDst minimum of −71 nT
(D∗

st −79 nT). From the remaining seven identified NS-type
MCs, one caused an intense storm (30 September – 1 Au-
gust 2002), but there was no significant southwardBz in the
sheath; four mcs were not geoeffective at all and in two cases
only sheath fields caused the storm.
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Fig. 14. The effect of the flux rope type to the geoeffectivity. Num-
bers in the parentheses show the total numbers of MCs identified in
each category. Different colors demonstrate the different geomag-
netic response: no storm at all,Dst>−50 nT (black); sheath region
generated a storm (dark gray); MC caused a moderate storm (light
gray); MC caused an intense storm (white).

4.4 Geomagnetic response of MCs with different flux rope
types

Figure14summarizes the geomagnetic response of MCs be-
longing to different flux rope categories. The pie-diagrams
in the top part of the figure show the distribution for bipolar
MCs. In more than half of the events either the sheath region
caused the storm or no significant activity at all was gener-
ated. It is interesting to note that when geoeffective, the SN
type MCs caused more intense storms than moderate storms.

For bipolar MCs the respond depends clearly on the direc-
tion of the magnetic field on the axis. In total we identified
15 S-type MCs. As seen from Fig.14 all of them caused
a storm: nine caused an intense storm (23 November 1997;
18 February 1998; 9 November 1998; 13 November 1998;
20 March 2001; 22 April 2001; 3 October 2001; 30 October
2003; 20 November 2003) and six caused a moderate storm
(27 May 1999; 17 April 1999; 23 August 1999; 5 March
2001; 29 February 2002; 20 March 2003).

From 12 N-type MCs none caused a storm. However, for
eight N-type MCs the sheath region preceding the MC gen-
erated a storm. Half of these were intense magnetic storms.
For example, the sheath preceding the N-type MC on 25–26
September 1998 caused an intense magnetic storm with the
Dst minimum−207 nT.

5 Discussion

We have investigated the properties of 73 MCs identified
from WIND and ACE measurements during 1997–2003,
covering rising, maximum and early declining phases of so-
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lar cycle 23. The investigated period does not cover the
whole solar cycle 23, but we have almost continuous cov-
erage of solar wind measurements. We applied the minimum
variance analysis to determine whether the preselected can-
didate MC regions exhibited smooth rotation of the magnetic
field in one plane. We also required that MCs must be low-
beta structures (averages values of beta within the MC less
than 0.5) with the maximum magnetic field magnitude 8 nT
or larger and the duration at least 6 h.

We identified the largest number of MCs during the early
rising phase when the solar activity was still low (1997–
1998). The number of observed MCs dropped in 1999, but
increased again at solar maximum (2000). After that the
MC rate started to decrease with the declining solar activity.
The number of MCs observed at 1 AU did not correlate with
the number of wide (angular width>120◦) LASCO CMEs.
Cane and Richardson(2003) found that near solar minimum
nearly 100% of all observed ICMEs at 1 AU had the MC
structure and the fraction decreased to 10–20% when solar
maximum was reached.

The occurrence rate of MCs is naturally affected by the
criteria used to define an MC. In general, MCs are easier to
identify from the solar wind near solar minimum than so-
lar maximum. Near solar maximum the mutual interaction
between CMEs and the ambient solar wind can lead to com-
plex structures at 1 AU where the individual characteristics
of CME(s) are no longer visible,Gopalswamy et al.(2001);
Burlaga et al.(2001); Wang et al.(2003b). A large fraction of
MCs can be associated with disappearing filaments,Wilson
and Hildner(1986); Bothmer and Schwenn(1994); Both-
mer and Rust(1997) and it is likely that CMEs originating
from the active regions rarely have an MC structure. Fila-
ments drift towards poles when solar activity increases, con-
trary to the sunspots and active regions that migrate towards
the equator (Hundhausen, 1993). Near solar minimum there
are few active regions and the filament disappearances occur
close to the equator. Furthermore, it has been shown that near
solar minimum CMEs are systematically deflected equator-
ward by the fast solar wind flow originating from large polar
coronal holes (Cremades and Bothmer, 2004). This suggests
that most solar minimum CMEs have an MC structure and
when encountering the Earth they are crossed near the axis.
Near solar maximum the filament eruptions occur mainly at
high latitudes and the number of CMEs are not deflected at
all or are deflected towards the poles (Cremades and Both-
mer, 2004). As a consequence, MCs arising from these fila-
ment sites miss the Earth completely or are crossed far from
the axis. The earthward-directed CMEs that mainly originate
from the active regions near the equator do not generally have
the MC structure.Wu et al.(2003) pointed out that the low
number of MCs observed in 1999 was likely due to the fact
that most filament disappearances occurred at very high lat-
itudes this year. The total number of MCs that encountered
the Earth during the solar maximum years was likely larger
than reported in Table 2, but our criteria did not identify these
as MCs. Also, it should be noted that although we could reli-
ably identify all MCs at 1 AU, we could not necessarily draw

conclusions about the total number of MCs expelled from
the Sun, as an increasingly larger amount of MCs are ex-
pelled from higher latitudes never reaching the Earth when
solar maximum is approach.

We identified somewhat more left-handed than right-
handed MCs (58% and 42%). Also, in the previous studies
the total amount of left-handed MCs was slightly larger than
the total amount of right-handed MCs. The equal amount of
left-handed and right-handed MCs is expected over the time
interval of several years, as left-handed MCs originate from
the Northern Hemisphere and right-handed MCs from the
Southern Hemisphere,Bothmer and Schwenn(1994); Rust
(1994). The largest difference was observed during the years
of high solar activity (1999–2001) when the magnetic equa-
tor of the Sun is not as well defined as near solar minimum.

From minimum variance analysis we obtained the esti-
mation for the orientation of the MC axes that we used to
separate MCs from those lying near the ecliptic plane (bipo-
lar, θC<45◦) and those perpendicular to the ecliptic plane
(unipolar,θC>45◦). In total we identified 46 bipolar MCs
(63% from all MCs). During the rising phase nearly all iden-
tified bipolar MCs were of the type SN. At solar maximum
and in the declining phase several NS-type MCs were ob-
served.

Figure 18 inBothmer and Rust(1997) demonstrates how
the magnetic structures of filaments and overlying magnetic
arcades are associated with the flux rope types of MCs and
their solar cycle changes. The suggested pre-eruptive con-
figuration of MCs consists of large-scale magnetic field ar-
cades overlying neutral lines/filament sites in bipolar regions,
e.g. Gosling et al.(1995); Martin and McAllister (1997).
The number of bipolar regions increases clearly when the
solar activity is high and the pre-eruption field configura-
tion may also form between two neighboring bipolar regions,
Tandberg-Hanssen(1974); Tripathi et al.(2003). MCs origi-
nating from the magnetic field configuration connecting two
bipolar regions would have a different sense of rotation than
those forming from a single bipolar region. Furthermore,
both NS- and SN-type MCs are observed during the periods
when magnetic regions from both the old and the new cycle
are present, i.e. during the declining activity cycle. In the
minimum and rising activity phases, when only a few bipolar
regions from a single cycle are present, the majority of MCs
have the same sense of magnetic field rotation.

In total, we found 23 unipolar MCs (37%).Mulligan et al.
(1998) suggested that the orientation of the coronal streamer
belt controls the inclination angle of the MC axis. They in-
terpreted their results that unipolar MCs are most frequent
in the declining phase when the neutral line is in many re-
gions tilted at large angles to the solar equator, while dur-
ing solar minimum and the rising phase, when the streamer
belt is more equatorial, MCs are mainly bipolar (Hoeksema,
1995). This is not consistent with our study, as we frequently
observed unipolar MCs in the rising phase, where the frac-
tion of unipolar MCs was about 40% for each year, while at
maximum and in the declining phase the fraction varied from
0 to 80%. We found no clear and systematic trend in the axial
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orientation of MCs with respect to the ecliptic.Marubashi
(1997) andZhao and Hoeksema(1998) have demonstrated
that the orientation of the MC axis relative to the ecliptic
plane correlates rather well with the tilt of the associated fil-
ament relative to the solar equator. For filaments studied by
Cremades and Bothmer(2004) between 1996 and 2002 no
systematic trend was observed in the tilt, but a tendency for
low inclined cases was observed after 2000. Apparently, the
deflection of CMEs by the ambient coronal solar wind flow
can deviate the CME axis from the associated filament orien-
tation (Cremades and Bothmer, 2004).

The geomagnetic response of MCs was investigated using
the 1-hDst index. We focused on whether the storm was
caused by sheath fields or by the MC itself. Sheath regions
are often associated with a fluctuating IMF direction and high
dynamic pressure while MCs have a smoothly changing IMF
direction and low dynamic pressure. Thus, they put the mag-
netosphere under very different solar wind input, (Huttunen
et al. (2002a); Huttunen and Koskinen(2004). About one-
third of MCs that encounter the Earth do not cause a storm at
all (when defined asDst<−50 nT). These MCs are typically
somewhat slower and have lower magnetic field magnitudes
than the average MC at 1 AU. We found that a sheath region
caused a storm in almost one-fourth of the cases. Thus, in
half of the events the southwardBz embedded in the MC was
the primary cause of the storm. MCs are inclined to cause in-
tense magnetic storms since out of 35 storms caused by MCs,
20 had aDst below−100 nT. However, six MCs that met the
solar wind threshold criteria for moderate or intense storms,
Gonzalez et al.(1994), had aDst response less intense than
expected.Tsurutani et al.(2003) investigated ring current in-
tensification during 11 storm main phases in 1997 that were
caused by a smoothly varyingBz component within MCs. In
5 cases they found a lack of substorm expansion phase for a
long period which they suggested to be the cause of the low
intensity of the storm.

The geomagnetic response of an MC depends greatly on
its flux-rope type. For the S-type MC the magnetic field is
purely southward at the axis where the magnetic field has its
maximum value, see Eq. (1). All 15 identified S-type MCs
caused a storm, nine of them an intense storm (e.g. the largest
storm of the solar cycle 23 on 19–20 November 2003). On
the contrary, from the 12 identified N-type MCs none caused
a storm, but for eight of these MCs the sheath region preced-
ing the MC itself was geoeffective. There are still large un-
certainties in determining the travel time of the CMEs from
the Sun to the Earth (?). We investigated the relation between
the travel time of the MC shock and the leading edge to 1 AU
and the expansion speed of the associated halo CME. The
results were slightly better in comparison to?, who investi-
gated the relationship between expansion speed and all halo
CME associated shocks at 1 AU.

6 Summary

The magnetic structure and geomagnetic response of MCs
detected by the WIND and ACE satellites are investigated
during solar cycle 23. The results confirm the solar cycle
evolution in the leading polarity of MCs found for the pre-
vious cycles (21–22) byBothmer and Rust(1997), Both-
mer and Schwenn(1998) and Mulligan et al. (1998), but
we did not find a clear and systematic trend in the axial
inclination of MCs with respect to the ecliptic. MCs that
are highly-inclined (“unipolar”) were frequently observed al-
most throughout the time investigated. This result is impor-
tant for the predictive purposes, as unipolar MCs that have
the field southward at the axis are particularly geoeffective.
In the rising phase nearly all “bipolar” MCs that are lying
near the ecliptic plane were associated with the SN rotation.
At solar maximum and in the declining phase the number
of bipolar MCs with the opposite sense of rotation was in-
creased. We suggest that at solar maximum the grouping of
bipolar regions and in the declining phase the presence of
magnetic regions from both new and old solar cycles, results
in the mixture of NS and SN type MCs.

The geomagnetic response of MCs varied greatly depend-
ing on the inferred flux-rope category. When geoeffective,
the MCs have a tendency to cause intense magnetic storms.
By distinguishing the contribution of the sheath region and
the MC itself we find that in the considerable fraction of
cases (22%) the sheath region caused theDst minimum of the
storm. In particular, the intensity and duration of southward
Bz in the sheath is crucial for N-type MCs, as they are not
geoeffective themselves. In principle, the flux-rope type of
an MC can be deduced in advance from the magnetic struc-
ture of the associated filament, e.g.Bothmer and Schwenn
(1998), but for the sheath fields no practical method has been
developed. Another important aspect is to reliably predict
the time of the storm. As shown in this study, there are still
large uncertainties in determining the MC arrival time from
the Sun to 1 AU. Whether the storm is caused by the south-
wardBz values in the sheath, in the leading part of the MC or
in the trailing part of the MC, can make a large difference as
to the timing of the storm. Particularly, an NS-type MC may
cause two separate magnetic storms due to a long separation
of southward fields in the sheath and in the MC between.
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