Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 23, issue 11 | Copyright
Ann. Geophys., 23, 3419-3430, 2005
https://doi.org/10.5194/angeo-23-3419-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

  21 Dec 2005

21 Dec 2005

Lightning driven inner radiation belt energy deposition into the atmosphere: regional and global estimates

C. J. Rodger1, M. A. Clilverd2, N. R. Thomson1, D. Nunn3, and J. Lichtenberger4 C. J. Rodger et al.
  • 1Department of Physics, University of Otago, Dunedin, New Zealand
  • 2Physical Sciences Division, British Antarctic Survey, Cambridge, UK
  • 3School of Electronics and Computer Science, Southampton University, Southampton, UK
  • 4Space Research Group, Eötvös University, Budapest, Hungary

Abstract. In this study we examine energetic electron precipitation fluxes driven by lightning, in order to determine the global distribution of energy deposited into the middle atmosphere. Previous studies using lightning-driven precipitation burst rates have estimated losses from the inner radiation belts. In order to confirm the reliability of those rates and the validity of the conclusions drawn from those studies, we have analyzed New Zealand data to test our global understanding of troposphere to magnetosphere coupling. We examine about 10000h of AbsPAL recordings made from 17 April 2003 through to 26 June 2004, and analyze subionospheric very-low frequency (VLF) perturbations observed on transmissions from VLF transmitters in Hawaii (NPM) and western Australia (NWC). These observations are compared with those previously reported from the Antarctic Peninsula. The perturbation rates observed in the New Zealand data are consistent with those predicted from the global distribution of the lightning sources, once the different experimental configurations are taken into account. Using lightning current distributions rather than VLF perturbation observations we revise previous estimates of typical precipitation bursts at L~2.3 to a mean precipitation energy flux of ~1×10-3 ergs cm-2s-1. The precipitation of energetic electrons by these bursts in the range L=1.9-3.5 will lead to a mean rate of energy deposited into the atmosphere of 3×10-4 ergs cm-2min-1, spatially varying from a low of zero above some ocean regions to highs of ~3-6×10-3 ergs cm-2min-1 above North America and its conjugate region.

Publications Copernicus
Download
Citation
Share