Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 23, issue 5
Ann. Geophys., 23, 1889–1908, 2005
https://doi.org/10.5194/angeo-23-1889-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 23, 1889–1908, 2005
https://doi.org/10.5194/angeo-23-1889-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

  28 Jul 2005

28 Jul 2005

Magnetohydrodynamic waves within the medium separated by the plane shock wave or rotational discontinuity

A. A. Lubchich and I. V. Despirak A. A. Lubchich and I. V. Despirak
  • Polar Geophysical Institute, Kola Science Centre, Russian Academy of Sciences, 184200 Apatity, Russia

Abstract. Characteristics of small amplitude plane waves within the medium separated by the plane discontinuity into two half spaces are analysed. The approximation of the ideal one-fluid magnetohydrodynamics (MHD) is used. The discontinuities with the nonzero mass flux across them are mainly examined. These are fast or slow shock waves and rotational discontinuities. The dispersion equation for MHD waves within each of half space is obtained in the reference frame connected with the discontinuity surface. The solution of this equation permits one to determine the wave vectors versus the parameter cp, which is the phase velocity of surface discontinuity oscillations. This value of cp is common for all MHD waves and determined by an incident wave or by spontaneous oscillations of the discontinuity surface. The main purpose of the study is a detailed analysis of the dispersion equation solution. This analysis let us draw the following conclusions. (I) For a given cp, ahead or behind a discontinuity at most, one diverging wave can transform to a surface wave damping when moving away from the discontinuity. The surface wave can be a fast one or, in rare cases, a slow, magnetoacoustic one. The entropy and Alfvén waves always remain in a usual homogeneous mode. (II) For certain values of cp and parameters of the discontinuity behind the front of the fast shock wave, there can be four slow magnetoacoustic waves, satisfying the dispersion equation, and none of the fast magnetoacoustic waves. In this case, one of the four slow magnetoacoustic waves is incident on the fast shock wave from the side of a compressed medium. It is shown that its existence does not contradict the conditions of the evolutionarity of MHD shock waves. The four slow magnetoacoustic waves, satisfying the dispersion equation, can also exist from either side of a slow shock wave or rotational discontinuity. (III) The expressions determining the polarisation of the MHD waves are derived in the reference frame connected with the discontinuity surface. This form of presentation is much more convenient in investigating the interaction of small perturbations with MHD discontinuities. It is shown that the perturbations of the velocity and magnetic field associated with the surface magnetoacoustic wave have the elliptic polarisation. Usually the planes of polarisation for the perturbations of the velocity and magnetic field are not coincident with each other.

Keywords. Space plasma physics (Discontinuities; Shock waves) – Interplanetary physics (Discontinuities; Interplanetary shocks) – Magnetospheric physics (Solar windmagnetosphere interactions)

Publications Copernicus
Download
Citation