Articles | Volume 23, issue 5
https://doi.org/10.5194/angeo-23-1735-2005
https://doi.org/10.5194/angeo-23-1735-2005
28 Jul 2005
 | 28 Jul 2005

Induction effects on ionospheric electric and magnetic fields

H. Vanhamäki, A. Viljanen, and O. Amm

Abstract. Rapid changes in the ionospheric current system give rise to induction currents in the conducting ground that can significantly contribute to magnetic and especially electric fields at the Earth's surface. Previous studies have concentrated on the surface fields, as they are important in, for example, interpreting magnetometer measurements or in the studies of the Earth's conductivity structure. In this paper we investigate the effects of induction fields at the ionospheric altitudes for several realistic ionospheric current models (Westward Travelling Surge, Ω-band, Giant Pulsation). Our main conclusions are: 1) The secondary electric field caused by the Earth's induction is relatively small at the ionospheric altitude, at most 0.4 mV/m or a few percent of the total electric field; 2) The primary induced field due to ionospheric self-induction is locally important, ~ a few mV/m, in some "hot spots", where the ionospheric conductivity is high and the total electric field is low. However, our approximate calculation only gives an upper estimate for the primary induced electric field; 3) The secondary magnetic field caused by the Earth's induction may significantly affect the magnetic measurements of low orbiting satellites. The secondary contribution from the Earth's currents is largest in the vertical component of the magnetic field, where it may be around 50% of the field caused by ionospheric currents.

Keywords. Geomagnetism and paleomagnetism (geomagnetic induction) – Ionosphere (electric fields and currents)