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Abstract. Whistler-mode wave propagation in magneto-
spheric ducts of enhanced cold plasma density is studied.
The case of the arbitrary ratio of the duct radius to the
whistler wavelength is considered, where the ray-tracing
method is not applicable. The set of duct eigenmodes
and their spatial structure are analysed and dependencies of
eigenmode propagation properties on the duct characteris-
tics are studied. Special attention is paid to the analysis of
the group delay time of one-hop propagation of the whistler
wave packet along the duct. We found that, in contrast to the
case of a wide duct, the group delay time in a rather narrow
duct decreases as the eigenmode number increases. The re-
sults obtained are suggested for an explanation of some types
of multi-component whistler signals.

Keywords. Electromagnetics (guided waves) – Magneto-
spheric physics (plasma waves and instabilities) – Radio sci-
ence (waves in plasma)

1 Introduction

Problem of whistler mode wave propagation in magneto-
spheric ducts is very interesting in relation to many differ-
ent problems of physics of the inner magnetosphere, for ex-
ample, cyclotron wave particle interaction, interpretation of
observations of whistler signals on satellites and ground sta-
tions, and others.

Magnetospheric ducts are the enhancements of the cold
plasma density aligned with the geomagnetic field, which are
extended between the Northern and Southern Hemispheres.
Although the existence of such structures is known for a
long time (Helliwell, 1965), very few direct satellite mea-
surements of duct structures are made (Angerami, 1970; Son-
walkar et al., 1994), yet there are many evidences for the
existence of ducts (seeSingh et al.(1998) and references
therein). These measurements demonstrate that parameters
of magnetospheric ducts change over a very wide range: the
radius of a duct can be from tens to hundreds of kilome-
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ters, and the density enhancement changes from fractions
of ambient plasma density up to multiple increases in the
case of a duct located outside the plasmasphere. It is clear
that in the case when the duct radius is much greater than
the characteristic wavelength the ray-tracing method is ap-
plicable (Strangeways, 1991, 1999). But if the duct radius is
comparable with the wavelength it is necessary to perform a
more strict analysis and to study the actual spatial structure
and dispersion properties of waves propagating in a duct.

The possibility of whistler mode wave trapping in the den-
sity duct was studied in many papers, see, for example,Hel-
liwell (1965); Karpman and Kaufman(1982); Strangeways
(1991). It is well known that whistler-wave trapping is pos-
sible in the ducts of enhanced plasma density in the fre-
quency rangeω<ωB/2, whereωB is the electron gyrofre-
quency. But in this frequency range two dispersion branches
exist: whistler and electrostatic mode, and the latter cannot
be trapped by the duct. In the homogeneous plasma these
waves are independent, but the inhomogeneity of the medium
leads to a linear transformation between whistler and elec-
trostatic modes. It results in the leakage of the whistler wave
power from the duct. The efficiency of such a transformation
is determined by the ratio of the inhomogeneity scale to the
wave length (Karpman and Kaufman, 1982; Bell and Ngo,
1990).

In a general case it is not possible to find an analytical so-
lution for the wave spatial structure in the duct with cylindri-
cal geometry, therefore, numerical methods should be used
(Laird and Nunn, 1975) for full-wave analysis. An analytical
solution may be found only for a piecewise-constant distribu-
tion of plasma across the duct and a detailed analysis of this
case was done byKondratyev et al.(1996, 1999). However,
in this case effective transformation between whistler and
electrostatic waves is possible due to the sharp duct bound-
ary, hence, this model is not applicable to the magnetosphere
conditions, where the density distribution is rather smooth.

Another possibility for developing the mode theory of a
whistler duct is to use the ray-tracing technique with the
quasi-classical eigenmode condition, as inLaird (1992),
for the plane-stratified duct model. In the frame of this
model it is possible to study the propagation properties of
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Fig. 1. Model plasma density distribution across the duct.

eigenmodes for a duct with smooth plasma distribution in
the case where the duct radius is much greater than the char-
acteristic whistler wavelength.

In this paper we consider a model of magnetospheric duct
with smooth plasma density distribution. We present the pro-
file of the plasma density distribution across the duct, for
which an analytical solution for cylindrical duct eigenmodes
exists. In contrast to the numerical consideration ofLaird and
Nunn(1975), where the duct is homogeneous along its axis,
we consider the case of the duct whose parameters vary along
its length. The peculiarities of whistler eigenmode propaga-
tion in the frame of this model are studied. The group delay
time for eigenmode propagation along the duct is calculated.
It is found that different eigenmodes have different propa-
gation times and on the basis of this result an explanation of
some types of multi-component whistler signals is suggested.

2 Magnetospheric duct eigenmodes

As a model of magnetospheric duct we consider a cylindri-
cally symmetric plasma column filled with an inhomoge-
neous density distribution across its axis and located in an
external magnetic fieldB0 parallel to the axis.

At first, let us consider the homogeneous duct along its
axis. We shall seek for the eigenmodes in the form of waves
propagating along the duct and having some transverse struc-
ture:

E = 8(r)eiωt−ik0pzH = i9(r)eiωt−ik0pz, (1)

wherek0p=k‖ is the wave vector component along the duct
axis z, r−coordinate across the duct,k0=ω/c, andc is the
speed of the light. Note that only axially symmetric modes
are considered here.

Substituting these expressions into Maxwell’s equations,
we obtain two second-order ordinary differential equations
for the electric-field components,8ϕ and 8z, and expres-
sions for other components of wave field, cf.Pasmanik
and Trakhtengerts(2001). An explicit analytical solution for

these equations may be found only for homogeneous plasma
distribution or for a duct with a piecewise-constant radial
density distribution. The results of rigorous analysis of this
duct model are summarised in the book byKondratyev et al.
(1999). As it was mentioned in the Introduction, in this case
an efficient transformation between whistler and electrostatic
modes occurs, resulting in the leakage of wave power from
the duct. Results from analytical (Karpman and Kaufman,
1982) and numerical (Laird and Nunn, 1975; Bell and Ngo,
1990) studies show that for a duct with a rather smooth
boundary the efficiency of this transformation is small.

We shall consider the case of a rather smooth plasma dis-

tribution (i.e.
∣∣∣N−1

c
dNc

dr

∣∣∣.k0qel , whereNc(r) is the plasma

density,k0qel=kel ⊥ is the characteristic value of the trans-
verse wavevector of a quasi-electrostatic mode) and restrict
our analysis to the low frequency waves (ω�ωB�ωp, where
ωp is electron plasma frequency), whose propagation angle
with respect to the magnetic field is not too large (i.e.q.p).
Taking into account these simplifications we obtain the fol-
lowing equations for the wave field components (seePas-
manik and Trakhtengerts(2001) for details):
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whereg=−ω2
pωB/ω(ω2

− ω2
B) andη=1−ω2

p/ω2 are com-
ponents of plasma dielectric permittivity tensorε̂, cf. Stix
(1992). The solution of these equations corresponds to a
whistler mode wave and the electrostatic mode is neglected.

The analytical solution of Eq. (2) for the eigenmode trans-
verse structure can be found for the following plasma density
distribution (Fig. 1):

N2
c (r) =

N2
d , r ≤ a

(N2
d − N2

∞)
a2

r2
+ N2

∞ , r > a,
(3)

whereNd andN∞ are plasma densities inside and outside of
the duct, anda is the radius of the duct core.

Let us note that under real conditions ducts are likely to
have a bell-shaped (a Gaussian-like) profile. However, re-
sults obtained should not change much if we consider such
types of density distribution across the duct. Use of differ-
ent density profiles would result only in some quantitative
changes in eigenmode properties. Concerning a discontinu-
ity in the gradient, it does not play a sufficient role. Numeri-
cal analysis of a full set of Maxwell’s equations using meth-
ods similar to that by Laird and Nunn (1975) and for density
distribution (3) revealed that our simplified approach gives
correct results. In particular, we have found that the trans-
formation between the whistler and the electrostatic mode is
negligible.
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The solution for8ϕ is represented in terms of the eigen-
mode series, and for distribution (3) it has the following
form:

8kϕ(r) =

{
BkJ1(k0qkr) r ≤ a

CkKνk
(k0skr) r > a,

(4)

where J and K are Bessel and Macdonald func-
tions, respectively, q2

k =g2
d/p2

k−p2
k , s2

k=p2
k−g2

∞/p2
k ,

ν2
k=1−k2

0a2(g2
d−g2

∞)/p2
k , gα=g(Nα), and k is the mode

index. Values k0qk and k0sk represent the transverse
component of the wave vector. The eigenvaluespk and the
corresponding values ofqk, sk, νk, and Ck/Bk are found
from the boundary condition of the continuity of the wave
field componentsEϕ , Hϕ , Hz at r=a:

J1(k0qkr)

(rJ1(k0qkr))′
=

Kνk
(k0skr)

(rKνk
(k0skr))′

∣∣∣∣
r=a

Ck/Bk = J1(k0qka)/Kνk
(k0ska) ,

(5)

where(. . .)′ denotes the derivatived
dr

.
Eigenmodes satisfy the following orthogonality condi-

tions:
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(6)

whereδk,k′ is the Kronecker’s symbol, and the asterisk de-
notes the complex conjugation. HereSk and Wk have the
meaning of the energy flux and energy density in the eigen-
mode, respectively.

To generalize these results to the case of duct whose pa-
rameters (magnetic fieldB0, radiusa, plasma densityNc) are
changing slowly along the axis we use the method of slowly
varying amplitudes, which gives us:

Ek = 8k(r, z)e
iωt−ik0

∫
pkdz

H k = i9k(r, z)e
iωt−ik0

∫
pkdz

(7)

where8k(r, z), 9k(r, z) andpk(z) are the solutions from the
case of a homogeneous duct (see Eq. (4)) with parameters of
the duct at given cross sectionz. Variation of the normalizing
constantBk along thez axis is determined from the energy
flux conservation law:Sk(z)=const.

3 Eigenmodes propagation properties

In this section the results of numerical analysis of the prop-
erties of duct eigenmodes are presented. The following main
characteristics of the eigenmode were considered: the paral-
lel component of the wave vectorpk, the effective angle of
wave propagation in the core of the ductαk= arctan(qk/pk),
and the component of the group velocity parallel to the mag-
netic fieldVG‖k

=Sk/Wk. These values characterize the local

(relative to the coordinate along the duct axis) properties of
the eigenmode propagation in the duct.

Another important parameter is the group delay time for
the eigenmode propagation, which characterizes the propa-
gation of a wave along the whole duct and is defined as

TGk
= 2

l∫
0

dz

VG‖k

, (8)

wherel is the half-length of the magnetic field line.
The dependence of these values on the duct parameters,

such as its radiusa, the cold plasma densityNd and the den-
sity enhancement1=Nd/N∞, is discussed below. It should
be mentioned that for the chosen distribution of the cold
plasma density across duct (3), more correct definitions for
the duct width is needed. Let us define the characteristic ra-
dius (half-width) of a ductaeff as the distance from the cen-
ter to the point where the density enhancement(N∞−Nc(r))

decreases by a factore (Fig. 1). This impliesaeff ≈2a for
parameter values used below.

To characterize the width of the duct in comparison with
the characteristic whistler wavelength we introduce the di-
mensionless parameterk‖0a, wherek‖0≈k0

√
g is the value

of the wave vector of a whistler propagating along the mag-
netic field in the uniform medium with parameters of the duct
core. Our analysis showed that valuesk‖0a�10 correspond
to the case of a wide duct, when the properties of eigen-
modes are similar to the properties of waves propagating in
a very smooth density distribution (i.e. to the case when a
ray-tracing method is applicable), and valvesk‖0a.10 cor-
respond to the case of a narrow duct, when the properties of
the eigenmode propagation are sufficiently different from the
previous case. Since the value ofk‖0 depends on frequency
let us also introduce parameterκ=ωp/(2c) which is approx-
imately equal to the value ofk‖0 for ω=ωB/4, i.e. the value
of k‖0 at a characteristic whistler frequency.

The dependencies of eigenmode parameters on the fre-
quency in the cases of wide and narrow ducts are presented in
Fig. 2 and examples of the transverse structure of the eigen-
modes are shown in Fig. 3. It should be noted that in our
model the properties of eigenmodes depend on relative duct
parameters, but not on their absolute values. The follow-
ing set of dimensionless duct parameters was chosen:ω/ωB ,
ωpd

/ωB , 1N≡Nd/N∞, κa.
In the case of a wide duct eigenmodes propagate with a

small angle to the duct axis (Fig. 2a) and the wave field ex-
ponentially decreases outside of the duct core (Fig. 3a). The
properties of eigenmodes in this case are mostly determined
by the plasma parameters in the inner part of the duct. With
a decrease in the duct radius, the propagation angle increases
and the eigenmode wave field sufficiently extends outside the
duct core (Figs. 2b and 3b). Parameterk‖0a and thus, the
effective width of the duct, increase with frequency. Conse-
quently, the angle of eigenmode propagation and separation
between eigenmodes (value ofpk−pk+1) decrease.

An interesting feature of the eigenmode propagation in
a narrow duct is the growth of the parallel component of
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Fig. 2. Dependencies of eigenmode parameters on the frequency in
the cases of wide(a) and narrow(b) ducts: a−κa=35, b−κa=10;
eigenmode indexes are shown on the legend, index 0 corresponds
to the whistler, propagating along the magnetic field in the plasma
with parameters of the duct core; other parameters:ωpd/ωB=15,
1=1.25.

the group velocityVG‖k
with an increase in a mode index

and hence, a propagation angle. This occurs because in the
outer part of the duct, where the plasma density is lower, the
group velocity of a whistler wave is greater than in the inner
part. With an increase in the eigenmode index, the trans-
verse structure of the wave field expands further from the
duct core, so the influence of the outer part of the duct on the
wave propagation increases.

Dependencies of eigenmode parameters on the coordinate
along the duct are shown in Fig. 4. To quantify the distance
from the equatorial plane along thez coordinate we use the
dimensionless parameterB(z)/BL, whereB(z) is the local
geomagnetic field value andBL=B(z=0) is the magnetic
field at the equator. The relation between the duct radius and
the magnetic field is defined asa(z)=aL

√
BL/B(z) and the

following distribution of the plasma density along the duct
was consideredNc(z)=NcLB(z)/BL.

As we move away from the equatorial plane the duct be-
comes narrower (parameterk‖0a decreases), thus the angle
of eigenmode propagation increases and the spatial structure
of the eigenmode expands more outside of the inner part of
the duct.

Let us now discuss the peculiarities of eigenmode prop-
agation along the duct. We shall assume the existence of
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Fig. 3. Examples of the eigenmode transverse structure in the cases
of wide (a) and narrow(b) ducts for the same parameter values as
in Fig. 2 andω/ωBL=0.14. Eigenmode indexes are shown on the
legend; the boundary of the duct core is marked by a dotted line.

a wide frequency band whistler-wave source, which excites
several eigenmodes simultaneously in the duct. As an exam-
ple of such source the lightning discharge can be assumed.
In this case a receiver, located in the conjugate footpoint
of the duct, will register a set of discrete signals, each of
them corresponding to one duct eigenmode. This feature
of whistler propagation in a duct can be used to explain the
multi-component whistler signals (see examples in the next
section).

Examples of the group delay time for eigenmode prop-
agation from the equatorial plane to the ionosphere at the
magnetic shellL=4 are shown in Fig. 5. Three cases with
different values of the duct radius are presented. As it was
discussed above, with decrease in the duct radius the separa-
tion between eigenmodes increases. Thus, each component
of the signal, corresponding to one of the duct eigenmodes,
will be more pronounced in the case of a narrow duct (com-
pare Figs. 5b and c). According to the dependence of the
group velocity on the mode index discussed above, a sig-
nal corresponding to the highest mode arrives first and a sig-
nal corresponding to the first mode arrives last (see Fig. 5c).
With an increase in duct radius the difference between the
propagation time of the different eigenmodes decreases (see
Fig. 5b). Finally, in the case of a rather wide duct, eigen-
modes arrive in a sequence of increasing mode index, as it
occurs in the case of a homogeneous medium (a decrease in
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Fig. 4. Dependencies of eigenmode parameters on the coordinate
along the duct (parameterized by magnetic field value) for differ-
ent frequencies: a−ω/ωBL=0.14, b−ω/ωBL=0.35; the same leg-
end as in Fig. 2 is used; other parameters:κa=5, ωpdL/ωBL=15,
ωpd /ωp∞

=1.25; subscriptL refers to the values at the equatorial
region.

the group velocity with an increase in the propagation angle,
see Fig. 5a).

Another possibility to explain multi-component signal is
to assume an existence of several ducts located nearby, which
are fed by one source (a lightning discharge) simultaneously.
The difference in parameters of these ducts can lead to the
formation of a multi-component signal, even in the case
when only one eigenmode is excited in each duct. Below
we consider such a case and assume that the first eigen-
mode (i.e.n=1) is excited. It should be noted that we use
such an assumption to demonstrate this mechanism for multi-
component whistler signal formation. In real conditions sev-
eral eigenmodes can be excited in each duct, as in the case
discussed above. Thus, both mechanisms can jointly act
in the formation of a multi-component signal resulting in
a more complex structure of the signal. However, accurate
consideration of this case requires separate analysis includ-
ing the solution of the eigenmode excitation problem by a
source. This is out of scope of this paper.

The group delay time of the first eigenmode propagation
in the ducts with different parameters is shown in Fig. 6.
The case of the ducts with different density enhancement1

(1=1.3, 1.4, 1.5), with the same values of the background
plasma densityN∞, radiusa, and located at the sameL-
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Fig. 5. The group delay time for eigenmode propagation
from the equator to the ionosphere at magnetic shellL=4
(FBL=13.5 kHz) for different values of the duct radius in the equa-
torial plane: a−aL≈90 km, b−aL≈30 km, c−aL≈20 km plasma
density:NdL≈510 cm−3, N∞L≈330 cm−3 (1≈1.55) Eigenmode
indexes are shown on the legend. Narrow duct case, plane(c): Sep-
arate components, corresponding to the particular eigenmode, are
more pronounced in a signal; propagation time decreases with in-
crease in the mode index. Wide duct case, plane(a): Components
are less pronounced; propagation time increases with an increase in
a mode index.

shell, is shown in Fig. 6a. Two cases of ducts located at dif-
ferentL-shells (L=4, 4.05, 4.1), with the same values of1,
a andN∞, are shown in Figs. 6b and c. The last cases differ
by the dependence of the background plasma density on the
distance from the Earth, i.e. the dependence of the equatorial
plasma density on theL-shell: in Fig. 6b the plasma density
is constant overL (N∞L

=const), and in Fig. 6c the plasma
density decreases with distance asN∞L

∝L−6.
An increase in the propagation time with an increase in1

(Fig. 6a) is explained by the fact that whistler group veloc-
ity decreases with an increase in the plasma density in the
duct. In the case of ducts at differentL-shells the follow-
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Fig. 6. The group delay time of the first eigenmode propagating
from the eautor to the ionosphere in the different ducts:
a− ducts with differenct density enhancements
1=NdL/N∞L (L=4,N∞L≈450 cm−3)
b − ducts at different magnetic shellsL, plasma density is the same,
(1=1.3, N∞L≈450 cm−3)
c − ducts at different magnetic shellsL, plasma density
N∞L∝L−3, (1=1.3, N∞L≈450 cm−3 atL=4).
Duct radius at the equatoraL≈50 km.

ing parameters determine the differences in the propagation
time: the equatorial cyclotron frequencyωHL, the magnetic
field line length, and the relation between plasma- and cy-
clotron frequenciesωpL/ωHL. With an increase inL the
equatorial cyclotron frequency decreases, thus in going over
from dimentionless parameterω/ωHL to a real frequency
value, we see that traces on the spectrogram move to lower
frequencies. The length of the magnetic line, determining

the path of wave propagation, increases, withL resulting in
an increase in the propagation time. Only these two param-
eters are changing in the case presented in Fig. 6c, where
the corresponding shift of eigenmode traces to the bottom-
right direction occurs asL increases. In the case presented in
Fig. 6b the value ofωpL/ωHL increases withL. This can be
interpreted as an effective increase in the plasma density and
it results in an additional increase in propagation time (see
discussions above).

As one can see from Figs. 5 and 6 the cases of signals
from one and several ducts have a significant difference: the
distance between signals increases at lower frequencies in the
first case, and decreases in the second case. This fact may be
important for an interpretation of experimental data.

4 Conclusions

We have presented in this paper the model of a magneto-
spheric duct with a smooth plasma distribution across its
axis. The great advantage of this model is that an analytical
solution for the duct eigenmodes can be found. In contrast
to the previous full-wave consideration byLaird and Nunn
(1975), we studied the case of a duct whose parameters (the
magnetic field, the radius, the cold plasma density) are vary-
ing along its axis. It allowed us to analyze the group delay
time of the propagation of the different eigenmodes from a
source (as, for example, lightning discharge) to the receiver
(a satellite or a ground-based station in the geomagnetically
conjugate point). We demonstrate that in the case of the
source simultaneously exciting several duct eigenmodes, the
receiver should register the set of discrete signals, each cor-
responding to one of the excited eigenmodes. The interval
between the arrival of the different eigenmodes depends on
the duct parameters, especially on its width; this interval is
longer in the case of a narrow duct and smaller in the case
of a wide duct. According to the results obtained this inter-
val can vary from several up to hundreds of milliseconds. An
interesting peculiarity of the decrease in the eigenmode prop-
agation time with an increase in a mode index is found. This
peculiarity is more pronounced at lower frequencies.

In the paper byLaird (1992) another method for whistler
duct mode theory is used – a ray-tracing technique with
a quasi-classical eigenmode condition in a plane-stratified
duct model. This simplified consideration is very effective
to study the propagation properties of whistlers in a rather
wide duct, when its radius is much greater than characteristic
whistler wavelength. This method demonstrates the same pe-
culiarities of ducted whistler propagation as discussed above,
in particular the decrease in propagation time with an in-
crease in the mode index.

Unfortunately, it is not possible to perform the direct com-
parison of results obtained from our model with the results
obtained byLaird (1992). The main difference between these
two models is in a duct geometry and thus, in a different
quantization condition for the eigenmodes. In the case of a
plane geometry the eigenvalues are found from the condition
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that the phase change on the full ray path across the duct is a
multiple of 2π :

2
∫ a

−a

k⊥dx = 2π(n −
1

2
), (9)

wherek⊥ andx are the wave vector component and the coor-
dinate across the duct, respectively, andn is the mode index.
In the case of a cylindrical geometry the condition for eigen-
values can be approximately written as

k⊥ na = k0qna ≈ µn (10)

in the case of a rather wide duct; hereµn is the n-th root of
the Bessel functionJ1(µn)=0.

It should also be mentioned that the mode theory, devel-
oped byLaird (1992), cannot be used to study the spatial
structure of the wave field in the duct.

In the paper byHamar et al.(1992) the matching filter-
ing analysis was applied for VLF data recorded at the ground
station Halley, Antarctica. The matching filtering technique
allows one to obtain the dynamic spectrum with a very high
resolution. Using this method authors have revealed that the
whistler trace may consist of several fine structured traces. In
particular examples presented in that paper such trace split-
ting was found to be on the order of 15–20 ms.Hamar et al.
(1992) suggested that one of the possible mechanisms of this
splitting is the multi-mode propagation of a signal in a duct.
With the help of the model presented in this paper and us-
ing plasma parameters fromHamar et al.(1992) (L=4.566,
NcL=220 cm−3) we can estimate other duct parameters from
the condition that the splitting between the first and the sec-
ond duct eigenmodes is 15–20 ms. We have found that it
occurs for equatorial duct radiusaL∼50 km and density en-
hancement1∼1.35.

In another paper byLichtenberger et al.(1996) the same
type of analysis was applied for measurements on the Ac-
tive (Intercosmos 24) satellite. Data presented in that paper
demonstrate the doublets of whistlers, a signal consisting of
several pairs of whistler traces. The separation between the
signals in a doublet was about 80 ms. The fine structure of
each of these traces (with approximately a 10 ms separation)
was also revealed. Applying our model to this case with the
available parameters:L=3.6,NcL=400 cm−3, Lichtenberger
et al.(1996), we see that these doublets with 80 ms splitting
could correspond to two eigenmodes of a duct with equato-
rial radiusaL∼35 km and density enhancement1∼1.45.

It would be very interesting to find experimental evidence
for the obtained peculiarities of whistler propagation in a nar-
row duct, when the eigenmodes with higher indexes have
a smaller group propagation time than the first eigenmode.
For that to occur satellite measurements of several wave field
components are required in order to determine the wave nor-
mal direction of different traces in the signal.
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