Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 23, issue 1
Ann. Geophys., 23, 135–145, 2005
https://doi.org/10.5194/angeo-23-135-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Eleventh International EISCAT Workshop

Ann. Geophys., 23, 135–145, 2005
https://doi.org/10.5194/angeo-23-135-2005
© Author(s) 2005. This work is distributed under
the Creative Commons Attribution 3.0 License.

  31 Jan 2005

31 Jan 2005

Comparison of the characteristic energy of precipitating electrons derived from ground-based and DMSP satellite data

M. Ashrafi, M. J. Kosch, and F. Honary M. Ashrafi et al.
  • Department of Communications Systems, Lancaster University, Lancaster, LA1 4WA, UK

Abstract. Energy maps are important for ionosphere-magnetosphere coupling studies, because quantitative determination of field-aligned currents requires knowledge of the conductances and their spatial gradients. By combining imaging riometer absorption and all-sky auroral optical data it is possible to produce high temporal and spatial resolution maps of the Maxwellian characteristic energy of precipitating electrons within a 240240 common field of view. These data have been calibrated by inverting EISCAT electron density profiles into equivalent energy spectra. In this paper energy maps produced by ground-based instruments (optical and riometer) are compared with DMSP satellite data during geomagnetic conjunctions. For the period 1995-2002, twelve satellite passes over the ground-based instruments' field of view for the cloud-free conditions have been considered. Four of the satellite conjunctions occurred during moderate geomagnetic, steady-state conditions and without any ion precipitation. In these cases with Maxwellian satellite spectra, there is 71% agreement between the characteristic energies derived from the satellite and the ground-based energy map method.

Publications Copernicus
Download
Citation