Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 22, issue 12
Ann. Geophys., 22, 4103–4122, 2004
https://doi.org/10.5194/angeo-22-4103-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 22, 4103–4122, 2004
https://doi.org/10.5194/angeo-22-4103-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.

  22 Dec 2004

22 Dec 2004

Magnetic local time, substorm, and particle precipitation-related variations in the behaviour of SuperDARN Doppler spectral widths

M. L. Parkinson1, G. Chisham2, M. Pinnock2, P. L. Dyson1, and J. C. Devlin3 M. L. Parkinson et al.
  • 1Department of Physics, La Trobe University, Victoria 3086, Australia
  • 2British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK
  • 3Department of Electronic Engineering, La Trobe University, Victoria 3086, Australia

Abstract. Super Dual Auroral Radar Network (DARN) radars often detect a distinct transition in line-of-sight Doppler velocity spread, or spectral width, from <50ms–1 at lower latitude to >200ms–1 at higher latitude. They also detect a similar boundary, namely the range at which ionospheric scatter with large spectral width suddenly commences (i.e. without preceding scatter with low spectral width). The location and behaviour of the spectral width boundary (SWB) (and scatter boundary) and the open-closed magnetic field line boundary (OCB) are thought to be closely related. The location of the nightside OCB can be inferred from the poleward edge of the auroral oval determined using energy spectra of precipitating particles measured on board Defence Meteorology Satellite Program (DMSP) satellites. Observations made with the Halley SuperDARN radar (75.5° S, 26.6° W, geographic; –62.0°Λ) and the Tasman International Geospace Environment Radar (TIGER) (43.4° S, 147.2° E; –54.5°Λ) are used to compare the location of the SWB with the DMSP-inferred OCB during 08:00 to 22:00 UT on 1 April 2000. This study interval was chosen because it includes several moderate substorms, whilst the Halley radar provided almost continuous high-time resolution measurements of the dayside SWB location and shape, and TIGER provided the same in the nightside ionosphere. The behaviour of the day- and nightside SWB can be understood in terms of the expanding/contracting polar cap model of high-latitude convection change, and the behaviour of the nightside SWB can also be organised according to substorm phase. Previous comparisons with DMSP OCBs have proven that the radar SWB is often a reasonable proxy for the OCB from dusk to just past midnight (Chisham et al., 2004). However, the present case study actually suggests that the nightside SWB is often a better proxy for the poleward edge of Pedersen conductance enhanced by hot particle precipitation in the auroral zone. Simple modeling implies that the large spectral widths must be caused by ~10-km scale velocity fluctuations.

Key words. Ionosphere (auroral ionosphere; ionospheremagnetosphere interactions) – Magnetospheric physics (storms and substorms)

Publications Copernicus
Download
Citation