Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 22, issue 12
Ann. Geophys., 22, 4035–4041, 2004
https://doi.org/10.5194/angeo-22-4035-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 22, 4035–4041, 2004
https://doi.org/10.5194/angeo-22-4035-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.

  22 Dec 2004

22 Dec 2004

Ozone and water vapour in the austral polar stratospheric vortex and sub-vortex

E. Peet1, V. Rudakov2, V. Yushkov2, G. Redaelli3, and A. R. MacKenzie1 E. Peet et al.
  • 1Environmental Science Department, Lancaster University, LA1 4BA, UK
  • 2Central Aerological Observatory, Russia
  • 3Department of Physics, University of l’Aquila, Italy

Abstract. In-situ measurements of ozone and water vapour, in the Antarctic lower stratosphere, were made as part of the APE-GAIA mission in September and October 1999. The measurements show a distinct difference above and below the 415K isentrope. Above 415K, the chemically perturbed region of low ozone and water vapour is clearly evident. Below 415K, but still above the tropopause, no sharp meridional gradients in ozone and water vapour were observed. The observations are consistent with analyses of potential vorticity from the European Centre for Medium Range Weather Forecasting, which show smaller radial gradients at 380K than at 450K potential temperature. Ozone loss in the chemically perturbed region above 415K averages 5ppbv per day for mid-September to mid-October. Apparent ozone loss rates in the sub-vortex region are greater, at 7ppbv per day. The data support, therefore, the existence of a sub-vortex region in which meridional transport is more efficient than in the vortex above. The low ozone mixing ratios in the sub-vortex region may be due to in-situ chemical destruction of ozone or transport of ozone-poor air out of the bottom of the vortex. The aircraft data we use cannot distinguish between these two processes.

Key words. Meteorology and atmospheric dynamics polar meteorology) – Atmospheric composition and structure (middle atmosphere–composition and chemistry)

Publications Copernicus
Download
Citation