Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 22, issue 11
Ann. Geophys., 22, 3869-3887, 2004
https://doi.org/10.5194/angeo-22-3869-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: 10th International Workshop on Technical and Scientific Aspects...

Ann. Geophys., 22, 3869-3887, 2004
https://doi.org/10.5194/angeo-22-3869-2004
© Author(s) 2004. This work is distributed under
the Creative Commons Attribution 3.0 License.

  29 Nov 2004

29 Nov 2004

Turbulent diffusivity in the free atmosphere inferred from MST radar measurements: a review

R. Wilson R. Wilson
  • Service d’Aéronomie/IPSL, Université P. et M. Curie, Paris, France

Abstract. The actual impact on vertical transport of small-scale turbulence in the free atmosphere is still a debated issue. Numerous estimates of an eddy diffusivity exist, clearly showing a lack of consensus. MST radars were, and continue to be, very useful for studying atmospheric turbulence, as radar measurements allow one to estimate the dissipation rates of energy (kinetic and potential) associated with turbulent events. The two commonly used methods for estimating the dissipation rates, from the backscattered power and from the Doppler width, are discussed. The inference methods of a local diffusivity (local meaning here "within" the turbulent patch) by using the dissipation rates are reviewed, with some of the uncertainty causes being stressed. Climatological results of turbulence diffusivity inferred from radar measurements are reviewed and compared.

As revealed by high resolution MST radar measurements, atmospheric turbulence is intermittent in space and time. Recent theoretical works suggest that the effective diffusivity of such a patchy turbulence is related to statistical parameters describing the morphology of turbulent events: filling factor, lifetime and height of the patches. It thus appears that a statistical description of the turbulent patches' characteristics is required in order to evaluate and parameterize the actual impact of small-scale turbulence on transport of energy and materials. Clearly, MST radars could be an essential tool in that matter.

Publications Copernicus
Special issue
Download
Citation
Share