Middle-energy electron anisotropies in the auroral region

P. Janhunen1, A. Olsson2, H. Laakso3, and A. Vaivads2

1Finnish Meteorological Institute, Geophysical Research, Helsinki, Finland
2Swedish Institute of Space Physics, Uppsala Division, Uppsala, Sweden
3ESTEC, Space Science Department, Noordwijk, The Netherlands

Received: 22 January 2003 – Revised: 25 March 2003 – Accepted: 13 May 2003 – Published: 1 January 2004

Abstract. Field-aligned anisotropic electron distribution functions of $T_\parallel > T_\perp$ type are observed on auroral field lines at both low and high altitudes. We show that typically the anisotropy is limited to a certain range of energies, often below 1 keV, although sometimes extending to slightly higher energies as well. Almost always there is simultaneously an isotropic electron distribution at higher energies. Often the anisotropies are up/down symmetrical, although cases with net upward or downward electron flow also occur. For a statistical analysis of the anisotropies we divide the energy range into low (below 100 eV), middle (100 eV–1 keV) and high (above 1 keV) energies and develop a measure of anisotropy expressed in density units. The statistical magnetic local time and invariant latitude distribution of the middle-energy anisotropies obeys that of the average auroral oval, whereas the distributions of the low and high energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral processes. The anisotropy magnitude decreases monotonically with altitude, because electrons have high mobility along the magnetic field and thus, the anisotropy properties spread rapidly to different altitudes.

Key words. Magnetospheric physics (auroral phenomena). Space plasma physics (wave-particle interactions; changed particle motion and acceleration)

1 Introduction

Field-aligned electron anisotropies have been found on auroral field lines at both high and low altitudes. Below 8000 km altitude, field-aligned electrons were detected by the S3-3 satellite (Sharp et al., 1980; Collin et al., 1982). Close to the equatorial plane, bidirectional anisotropies were studied using IMP 6 (Hada et al., 1981), AMPTE/CCE (Klumpar et al., 1988), AMPTE/IRM (Sergeev et al., 2001) and SCATHA (Richardson et al., 1981). Also geostationary satellites (corresponding to invariant latitude of 67$^\circ$) have detected electron anisotropies (Lin et al., 1979). Between the low altitudes and the equatorial plane, only Polar has provided data that have been used to study electron anisotropies (Kletzing and Scudder, 1999).

Electron anisotropies in the auroral zone above the acceleration region are important from at least two different viewpoints. One viewpoint is that the return current regions adjacent to auroral arcs contain field lines where ionospheric electrons are accelerated upward, probably by downward parallel electric fields (Marklund and Karlsson, 2001). This mechanism produces upgoing electron beams. The beams we observe are often bidirectional; however to explain these using the return current region mechanism, the beams coming from the opposite hemisphere should also preserve their adiabaticity when moving through the equatorial plane, which is not self-evident.

Another viewpoint is that wave-particle interactions might also produce electron anisotropies directly (Janhunen et al., 2001, 2003a). In this case the waves are the cause of the anisotropies, and the anisotropies might, in turn, be related to other auroral processes, such as potential structure formation. This occurs because an anisotropic electron distribution, together with the mirror force, generates a parallel electric field, if the ion anisotropy differs from the electron anisotropy. This was shown by Alfvén and Fälthammar (1963) under the simplifying assumption that all particles have the same magnetic moment and energy; for a more recent and complete discussion, see, e.g. Whipple (1977). Explained in another way, an anisotropic electron distribution in the absence of parallel electric fields generates an electron density profile that varies with altitude. Unless the ion density profile has a similar altitude variation, which is very unlikely, a tendency to produce a charge imbalance results. Next, we assume that some of the electrons are cold and of ionospheric origin. If the resulting charge imbalance is greater than the cold electron density at any point, parallel potential differences of the same order of magnitude as the energy...
of the electron anisotropic component will develop, because the parallel electric field now has to be large enough to alter the motion of the magnetospheric electrons. If, on the other hand, the charge imbalance remains below the cold electron density, only small parallel fields develop, with the parallel potential being of the order of the magnitude of the cold electron temperature. Thus, the appearance or non-appearance of significant parallel potential differences depends only on the density of the anisotropic component and on the type of the anisotropy, whereas the magnitude of the potential differences, in case they appear, also depends on the temperature of the anisotropic component. In this viewpoint, electron anisotropies are expected to be correlated with auroral phenomena in general and not limited to the return current region. By looking at the appearance of the anisotropies only, anisotropies related to the return current region or to wave-particle interactions in the magnetosphere cannot necessarily be distinguished from each other.

The purpose of this paper is to gain and present event-based and statistical knowledge of the electron anisotropies and to show that it is specifically the middle-energy anisotropies (100–1000 eV) that probably play a role in auroral phenomena. This knowledge may be useful later in distinguishing among the two mentioned viewpoints, i.e. how important are anisotropies related to upflowing electron beams relative to those (if any) anisotropies that are produced “in situ” in the magnetosphere.

The structure of the paper is as follows. We first explain and motivate the definitions of anisotropy measures used in this paper. Thereafter we present and discuss in detail three anisotropy events observed by the HYDRA instrument on the Polar satellite. Then we present statistical results using five years of HYDRA observations and close the paper with a summary.

2 Data processing

To investigate the electron distribution functions in the 5000–30 000 km altitude range we use the Polar HYDRA data from years 1996–2000 (Scudder et al., 1995). The time resolution of the data is about 12 s and the energy range 2 eV–28 keV. The pitch angle resolution is not fixed by the instrument because it contains 12 narrow-field sensors which are rotating with the spacecraft and each of them makes a complete energy scan in about 1.1 s. Electrons and ions are measured by each detector on alternate energy scans. In this paper we bin the HYDRA data into 15° pitch angle bins.

Usually one describes an anisotropic distribution by a Maxwellian or kappa distribution having different parallel and perpendicular temperatures. Thus, one could think that giving the temperature ratio $T_∥/T_⊥$, perhaps multiplied by the electron density, would be a good way of quantifying the magnitude of the anisotropy. However, in practice, this approach has a severe difficulty: it will turn out that almost always the electron plasma cannot be modelled by a single Maxwellian or kappa distribution, but one needs at least two such distributions (examples are given by Janhunen et al., 2001). The anisotropy usually exists in only one of these distributions. Therefore, one way of defining the anisotropy properly is to have a superposition of at least two Maxwellian or kappa distributions, where one of the populations is anisotropic. As a result, one obtains the temperature ratio of the anisotropy. This approach is perhaps useful for manual analysis of a few timesteps, but it is too complicated to be useful in a statistical study having $\sim 10^6$ measurements.

To get around this problem and to be able to do a statistical study, we first quantify the anisotropy simply by taking the differential energy flux $F(E, \theta)$, where E is the energy and θ is the pitch angle (the dimensionality of F is $\text{eV cm}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{eV}^{-1}$) and compute the ratio $r(E)$ between the parallel and perpendicular fluxes,

$$r(E) = \frac{(1/2)(F(E, 0) + F(E, \pi))/F(E, \pi/2).}{}$$

We call $r(E)$ the relative energy-dependent anisotropy. The relative energy-dependent anisotropy is useful for colour-coded plotting as a function of time and energy, and it will be used in the example events in Sect. 3 below. Such a plot tells us at a glance in which energy range the anisotropy mainly occurs.

While the relative energy-dependent anisotropy defined above is useful in studying individual events, for statistical purposes it has three drawbacks: (1) for quantifying the anisotropy one would prefer a single number, not something which is a function of the energy, (2) being a relative number it does not tell how many electrons are actually anisotropic, (3) it is not particularly robust against instrument problems, since it depends on the differential energy flux measured in only a few pitch angle bins, two of which are exactly parallel to the magnetic field and thus not always measured reliably (unreliability exists if none of the 12 sensors points to the field-aligned direction).

The event plots in the next section will make it clear that often the anisotropy occurs mainly between 100 eV and 1 keV only. Motivated by this, we shall call the interval 10–100 eV range “low”, the 100–1000 eV range “middle” and the interval 1–10 keV range “high”. Thus, to measure the anisotropy that we are mainly interested in, one should consider only the middle energy range. To overcome the first two problems in the relative energy-dependent anisotropy listed in the previous paragraph, one could, for example, average Eq. (1) over the middle-energy range and multiply by the density of middle-energy electrons. This would give a single number which is proportional to both the anisotropy and the density, i.e. the “anisotropic part” of the density (note, however, that it can also exceed the total density if $r(E)$ is large). This procedure involves two integrations and still depends on the exactly parallel pitch angle bins and thus still has the robustness problem.

The reason why we are more interested in the density than in the temperature is that the density controls the appearance or non-appearance of potential structures, while the temperature affects the magnitude of the structures, but only when
Finally, the relative anisotropy \(A_{\text{rel}}\) is a dimensionless number indicating the significance of the anisotropy. It is positive for \(T_\parallel > T_\perp\) type anisotropies, equal to zero for isotropic distributions and negative for \(T_\parallel < T_\perp\) type anisotropies.

The anisotropies, as defined here, can have both positive and negative values. Negative anisotropies \((T_\perp > T_\parallel\) type anisotropies) turn out to be rare, at least in the middle energy range, and are not discussed in this paper.

3 Specific events

To obtain a more concrete picture of the electron anisotropies in the auroral zone, we now study three specific events, collected at radial distances between 3.5 and 5.5 \(R_E\), where the first one represents eveningside, the second one midnight and the third one morningside. Some kind of middle-energy anisotropies can be discerned in almost all auroral crossings. The examples selected here exhibit anisotropies that are a bit stronger and clearer than on the average, but that are not the strongest possible. The examples are from Northern Hemisphere, so a zero pitch angle means downward.

3.1 Eveningside event – 8 May 1998

Figure 1 shows the event that occurred on 8 May 1998, 11:35–12:35 UT. Panels (a–c) show the standard HYDRA differential energy flux panels in the downward (pitch angle range 0–30\(^\circ\)) and upward (75–105\(^\circ\)) directions, respectively. From these panels it is difficult to detect anisotropies, but they become very clear in panel (d) which is the relative energy-dependent anisotropy, (Eq. 1). The \(T_\parallel > T_\perp\) type anisotropies that we are interested in and which are also the most common appear as red. In all HYDRA colour panels, differential energy fluxes which are smaller than 10\(^3\) eV cm\(^{-2}\)s\(^{-1}\)sr\(^{-1}\) eV\(^{-1}\) are shown as black. In panel (d), if either the parallel or the perpendicular differential energy flux is smaller than the limit 10\(^3\) eV cm\(^{-2}\)s\(^{-1}\)sr\(^{-1}\) eV\(^{-1}\), the corresponding relative energy-dependent anisotropy is also shown as black. Additionally, points having larger than 30% statistical error (points that have less than 10 counts) are shown as black. Thus, values differing from black are guaranteed to represent values that are measured reliably. Panel (e) shows three curves: the anisotropy \(n_{\text{aniso}}\) (red), the up minus down difference anisotropy \(n_{\text{aniso}}\) (green) and the relative anisotropy \(A_{\text{rel}}\) (black). The scale of the red and green curves is on the left (both are in density units) and the scale of the dimensionless black curve is on the right.

In Fig. 1, Polar arrives from the polar cap and enters the auroral zone at 12:00 UT in the pre-midnight sector. Rather strong middle-energy anisotropies are detected 12:02–12:07 UT. The anisotropies also extend above 1 keV to some extent (panel d). The middle-energy anisotropy (panel e) reaches 0.2 cm\(^{-3}\) and the relative anisotropy \(A_{\text{rel}}\) (Eq. 6) has a maximum value of 2. The anisotropies are almost up/down symmetrical because the difference anisotropy
Fig. 1. HYDRA electron data for 8 May 1998, 11:40–12:35 UT. Panels from top to bottom: differential electron energy flux for (a) downgoing electrons, (b) perpendicular electrons, (c) upgoing electrons; (d) ratio of parallel to perpendicular differential energy flux (energy-dependent relative anisotropy $r(E)$, Eq. (1)); and (e) three middle-energy anisotropy curves: n_{aniso} (red) and $n_{\text{diff\ aniso}}$ (green) with scale on the left, and relative anisotropy A_{rel} (black, with scale on the right).
Figure 2. Electron distribution function (cm$^{-2}$ s$^{-1}$ sr$^{-1}$ keV$^{-2}$) for four successive 12-s intervals on 8 May 1998 event, starting at (a) 12:02:18 UT, (b) 12:02:30, (c) 12:02:42 UT, (d) 12:02:54. Velocities corresponding to 10 eV, 100 eV, 1 keV and 10 keV energies are shown by blue circles; notice that the innermost circle is very small. Magnetic field is oriented downward, parallel to the positive vertical axis, and positive parallel velocity is along the magnetic field, i.e. downward, and the loss cone, if any, appears on the top of each panel.

The middle-energy anisotropies can extend to higher than 1 keV energies. Figure 2 shows the electron distribution function at four successive intervals, separated by 12 s, around the strongest anisotropy peak at 12:02–12:03 UT. The four circles where the innermost one is barely visible correspond to 10, 100, 1000 and 10 000 eV energies. The first interval (panel a) displays almost no anisotropy, whereas the second one (panel b) exhibits a clear middle-energy anisotropy. This anisotropy is slightly atypical in that there are relatively few electrons below 100 eV energy. The 3rd interval (panel c) also displays a clear anisotropy, and in the 4th interval (panel d) there still exists anisotropy, with a modest predominantly downward character. Now the anisotropy also extends to higher energies above 1 keV. In all panels an almost isotropic high-energy Maxwellian electron distribution is seen which is likely to be of magnetospheric origin. This is a feature which is nearly invariably associated with the middle-energy anisotropies.
Fig. 3. Same as Fig. 1 but for 22 April 1998, 03:55–04:35 UT.
The high-energy isotropic electrons have not experienced any parallel acceleration.

3.2 Midnight event – 22 April 1998

Figure 3 shows the event that occurred on 22 April 1998, 03:55–04:35 UT, near the local midnight. The format of the figure is similar to Fig. 1. Again, Polar moves from the polar cap into the auroral zone at 03:58 UT. Strong low and middle-energy anisotropies can be detected over the whole auroral interval. Highest anisotropies occur 03:59–04:01 UT (red line in panel e), when the relative anisotropy A_{rel} (black line in panel e) reaches almost 4. The strongest peak at 04:01 UT is predominantly downward (negative green curve in panel e), but otherwise the anisotropies are more or less up/down symmetrical.

Figure 4 presents four distribution functions, taken at four successive intervals separated by 12 s around the strongest anisotropy peak 04:01 UT. They show that in this case the anisotropies did not vary as rapidly as in the 8 May 1998 example. All four intervals show roughly similar and rather typical (strong) middle-energy anisotropies.

In this event there are also low-energy up- and downgoing electron beams visible in Fig. 3, for example, around...
Fig. 5. Same as Fig. 1 but for 10 March 1998, 21:40–22:50 UT.
3.3 Morningside event – 10 March 1998

Figure 5 shows an event that occurred on 10 March 1998, 21:40–22:45 UT, in the post-midnight sector. There is anisotropy all the way from 22:05 to 22:35 UT. The strongest peak appears close to 22:30 UT. The anisotropies during this event are at somewhat lower energies than in the other two examples, now extending all the time, also well below 100 eV, and there are hardly any anisotropies above 1 keV, even though strong electron fluxes exist around 1 keV (see the top three panels).

The distribution functions taken around 22:30 UT (Fig. 6) show how the anisotropy grows and reaches its peak and then suddenly becomes reduced. At the same time the temperature of the high-energy electron population increases (or a new population appears). When the anisotropy reaches its peak (panel b) the whole distribution is irregular, which suggests that rapid temporal variations are going on during this 12-s integration.
In all three events presented, strong anisotropy peaks accompany the polar cap boundary, which is sharply defined. Among auroral crossings of Polar, this kind of behaviour is relatively common, although by no means a rule. Also, in the events shown, some of the anisotropy peaks occur together with sudden changes in the high energy electron distribution. This behaviour is not very typical, but occurs only in some events.

4 Statistical results

4.1 MLT and ILAT

Figure 7 shows the distribution of the 90th percentile of the electron anisotropies for three energy ranges, as a function of MLT and ILAT. The bottom panel shows the number of hours measured by the instrument in each bin. The radial distance range included in the plot is $2.5 - 6R_E$. The 90th percentile is defined as the value which is such that 90% of the measured values are smaller and 10% are larger. The motivation for selecting the 90th percentile is that 10% is the typical occurrence frequency of auroral arc-related phenomena within the auroral zone. If one uses the 75th percentile (i.e. the upper quartile) instead of the 90th percentile, for example, the values in all panels become smaller but the patterns remain qualitatively very similar. The high-energy range (top panel) has the lowest values for the anisotropy, and these anisotropies occur mainly near the midnight auroral zone. The middle-energy anisotropies (second panel from the top) follow the auroral oval pattern, with a clear MLT dependence, with anisotropies being more common around midnight than elsewhere. The third panel from top shows the low-energy anisotropies, which are seen to be mainly a dayside phenomenon, being more common in the pre-noon sector than in the post-noon sector. Although the dayside is not the primary emphasis of this paper we remark that the preference of the low-energy anisotropies to appear before noon might be due to $E \times B$-drifting cold plasma flowing away from the Earth in the post-noon sector which follows from the combined effect of magnetospheric convection and corotation (Kivelson and Russell (1995), Fig. 10.25 on p. 316).

The high-energy anisotropies could possibly give rise to potential structures of large magnitude, if the density imbal-
The bottom panel of Fig. 9 shows the 90th percentile of the middle-energy anisotropies against the geocentric radial distance R for small (≤ 2) and large (> 2) K_p values. The top panel presents the number of hours the satellite spent in each 0.5R_E radial distance bin. We notice that for increasing K_p the anisotropy magnitude increases. Furthermore, the anisotropy magnitude increases with decreasing altitude, which is natural because the stronger the anisotropy (the larger the ratio $T_{||}/T_{\perp}$), the more the density follows the flux tube scaling (Eq. (7) and Fig. 1 of Janhunen and Olsson, 2002a). It could also partly be caused by failing to detect very field-aligned anisotropies at high altitudes, because one of the detectors is not always looking exactly at field-aligned direction. Notice also that the high-altitude anisotropies should be more field-aligned than the low-altitude ones because of the mirror force.

5 Summary and discussion

In this paper we have investigated middle-energy electron anisotropies in the auroral zone, using observations of electron distribution functions by the HYDRA instrument from the Polar satellite and using a novel definition of anisotropy which is capable of quantifying anisotropies occurring in a limited energy range. The major findings are as follows:

1. Most often the $T_{||} > T_{\perp}$ type anisotropies are limited to a certain energy range, typically ~ 100–1000 eV.
2. Almost always there is simultaneously an isotropic electron distribution at higher energies.
3. Often the anisotropies are up/down symmetric, although cases with net upward or downward electron flow also occur.
4. The MLT-ILA T distribution of middle-energy anisotropies (100–1000 eV) obeys that of the average auroral oval (Fig. 7). The distributions of the low and high-energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral acceleration processes.
5. When the K_p index increases, the middle-energy anisotropies appear at lower ILAT in all MLT sectors, as is expected for an auroral oval related process. Their 90th percentile also increases with increasing K_p.

6. The altitude dependence of the anisotropies is smooth as one would expect, because the electrons have high mobility along the magnetic field and thus the anisotropies spread rapidly to different altitudes.

7. Within the auroral zone and at about $4 R_E$ radial distance, the 90th percentile of the middle-energy (100–1000 eV) anisotropic density is $\sim 0.02 - 0.03 \text{cm}^{-3}$. The anisotropic density decreases with increasing radial distance R, so that it is roughly proportional to $R^{-1.8}$, which can be deduced from Fig. 9.

In order to assess the role of the middle-energy anisotropies further using observational studies, one should find their statistical correlation with other phenomena occurring on auroral field lines, such as broad-band wave activity. If the waves are producing the anisotropies, then there should exist a correlation between them, as is recently found in an event study by Janhunen et al. (2001).

A possible mechanism for producing middle-energy electron anisotropies is to have waves whose parallel phase velocity is in Landau resonance with the thermal speed of electrons. Recent particle simulations have shown that ion Bernstein waves driven to be unstable by a hot ion shell distribution can energise $\sim 100 \text{eV}$ electrons at a rate of 80eV/s (Janhunen et al., 2003a). Since the travel time of a 100eV electron (parallel energy) through the altitude range of, say, $4 R_E$ is 4 s, such electrons may gain several hundred eV of extra parallel energy during one trip through the region. Because of the mirror force and convergent flux tube geometry, parallel electron energisation should also produce macroscopic charge separation effects. It has been demonstrated using a special type of electrostatic hybrid simulations that parallel electron energisation may lead to self-consistent auroral potential structure formation (Janhunen and Olsson, 2002a).

If one tries to build a synthesis of the new results mentioned in this paragraph, the following picture tends to emerge: (1) Ion Bernstein or lower hybrid waves are driven unstable by some free energy source, possibly a hot ion shell distribution (Janhunen et al., 2003a). One way to produce ion shell distributions is by time of flight effects of ions injected from the reconnection X line. (2) Middle-energy electrons (the present paper) are energised by the waves in the parallel direction with a Landau resonance mechanism (Janhunen et al., 2001, 2003a). (3) The parallel energisation of electrons leads to charge separation effects and auroral potential structure formation taking place below $\sim 4 R_E$ radial distance (Janhunen et al., 1999; Janhunen and Olsson, 2002a). (4) The presence of the potential structure gives the characteristic inverted-V shape to low-altitude electron distributions (Janhunen and Olsson, 2000), generates upgoing ion beams (Janhunen et al., 2003b) and a density cavity (Janhunen et al., 2002b). Alfvénic wave acceleration probably modifies this picture in dynamic events such as substorm onsets. The middle-energy electron anisotropies are thus one important link in a relatively complicated chain of energy flow from the reconnection X-line to inverted-V electron precipitation.

Acknowledgements. We are grateful to Craig Kletzing for providing the HYDRA data and for giving many useful comments. The work of PJ was supported by the Academy of Finland and that of AO and AV by the Swedish Research Council.

The Editor in Chief thanks V. Sergeev and another referee for their help in evaluation this paper.

References

