Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 21, issue 1
Ann. Geophys., 21, 389-397, 2003
https://doi.org/10.5194/angeo-21-389-2003
© Author(s) 2003. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Mediterranean Forecasting System Pilot Project (MFSPP)

Ann. Geophys., 21, 389-397, 2003
https://doi.org/10.5194/angeo-21-389-2003
© Author(s) 2003. This work is distributed under
the Creative Commons Attribution 3.0 License.

  31 Jan 2003

31 Jan 2003

A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model

I. Hoteit1, G. Triantafyllou2, G. Petihakis2, and J. I. Allen3 I. Hoteit et al.
  • 1Scripps Institution of Oceanography, 8810 Shell Back Way , La Jolla, California, 92037, USA
  • 2Institute of Marine Biology of Crete, P.O.Box 2214, Iraklio, 71003 Crete, Greece
  • 3Plymouth Marine Laboratory, Prospect Place, West Hoe, Plymouth, PL1 3DH, UK

Abstract. A singular evolutive extended Kalman (SEEK) filter is used to assimilate real in situ data in a water column marine ecosystem model. The biogeochemistry of the ecosystem is described by the European Regional Sea Ecosystem Model (ERSEM), while the physical forcing is described by the Princeton Ocean Model (POM). In the SEEK filter, the error statistics are parameterized by means of a suitable basis of empirical orthogonal functions (EOFs). The purpose of this contribution is to track the possibility of using data assimilation techniques for state estimation in marine ecosystem models. In the experiments, real oxygen and nitrate data are used and the results evaluated against independent chlorophyll data. These data were collected from an offshore station at three different depths for the needs of the MFSPP project. The assimilation results show a continuous decrease in the estimation error and a clear improvement in the model behavior.

Key words. Oceanography: general (ocean prediction; numerical modelling) – Oceanography: biological and chemical (ecosystems and ecology)

Publications Copernicus
Special issue
Download
Citation
Share