Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 21, issue 1
Ann. Geophys., 21, 205-220, 2003
https://doi.org/10.5194/angeo-21-205-2003
© Author(s) 2003. This work is distributed under
the Creative Commons Attribution 3.0 License.

Special issue: Mediterranean Forecasting System Pilot Project (MFSPP)

Ann. Geophys., 21, 205-220, 2003
https://doi.org/10.5194/angeo-21-205-2003
© Author(s) 2003. This work is distributed under
the Creative Commons Attribution 3.0 License.

  31 Jan 2003

31 Jan 2003

A one-way nested eddy resolving model of the Aegean and Levantine basins: implementation and climatological runs

G. Korres and A. Lascaratos G. Korres and A. Lascaratos
  • Department of Applied Physics, University of Athens, Athens, Greece

Abstract. The present study deals with the implementation of an eddy resolving model of the Levantine and Aegean basins and its one-way nesting with a coarse resolution (1/8° × 1/8°) global Mediterranean general circulation model. The modelling effort is done within the framework of the Mediterranean Forecasting System Pilot Project as an initiative towards real-time forecasting within the eastern Mediterranean region. The performed climatological runs of the nested model have shown very promising results on the ability of the model to capture correctly the complex dynamics of the area and at the same time to demonstrate the skill and robustness of the nesting technique applied. A second aim of this study is to prepare a comprehensive climatological surface boundary conditions data set for the Mediterranean Sea. This data set has been developed within the framework of the same research project and is suitable for use in ocean circulation models of the Mediterranean Sea or parts of it. The computation is based on the ECMWF 6-h atmospheric parameters for the period 1979–1993 and a calibrated set of momentum and heat flux bulk formulae resulted from previous studies for the Mediterranean region.

Key words. Oceanography: general (numerical modelling); physical (general circulation; air-sea interactions)

Publications Copernicus
Special issue
Download
Citation
Share