Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year
    1.614
  • CiteScore value: 1.61 CiteScore
    1.61
  • SNIP value: 0.900 SNIP 0.900
  • IPP value: 1.58 IPP 1.58
  • SJR value: 0.910 SJR 0.910
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 80 Scimago H
    index 80
  • h5-index value: 24 h5-index 24
Volume 20, issue 6
Ann. Geophys., 20, 847-862, 2002
https://doi.org/10.5194/angeo-20-847-2002
© Author(s) 2002. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 20, 847-862, 2002
https://doi.org/10.5194/angeo-20-847-2002
© Author(s) 2002. This work is distributed under
the Creative Commons Attribution 3.0 License.

  30 Jun 2002

30 Jun 2002

STRATAQ: A three-dimensional Chemical Transport Model of the stratosphere

B. Grassi, G. Redaelli, and G. Visconti B. Grassi et al.
  • Universita degli Studi di l’Aquila, Dipartimento di Fisica, Via Vetoio, 67010 Loc. Coppito l’Aquila, Italy
  • Correspondence to: B. Grassi
  • (Barbara.grassi@aquila.infn.it)

Abstract. A three-dimensional (3-D) Chemical Transport Model (CTM) of the stratosphere has been developed and used for a test study of the evolution of chemical species in the arctic lower stratosphere during winter 1996/97. This particular winter has been chosen for testing the model’s capabilities for its remarkable dynamical situation (very cold and strong polar vortex) along with the availability of sparse chlorine, HNO3 and O3 data, showing also very low O3 values in late March/April. Due to those unusual features, the winter 1996/97 can be considered an excellent example of the impact of both dynamics and heterogeneous reactions on the chemistry of the stratosphere. Model integration has been performed from January to March 1997 and the resulting long-lived and short-lived tracer fields compared with available measurements. The model includes a detailed gas phase chemical scheme and a parameterization of the heterogeneous reactions occurring on liquid aerosol and polar stratospheric cloud (PSC) surfaces. The transport is calculated using a semi-lagrangian flux scheme, forced by meteorological analyses. In such form, the STRATAQ CTM model is suitable for short-term integrations to study transport and chemical evolution related to "real" meteorological situations. Model simulation during the chosen winter shows intense PSC formation, with noticeable local HNO3 capture by PSCs, and the activation of vortex air leading to chlorine production and subsequent O3 destruction. The resulting model fields show generally good agreement with satellite data (MLS and TOMS), although the available observations, due to their limited number and time/space sparse nature, are not enough to effectively constraint the model. In particular, the model seems to perform well in reproducing the rapid processing of air inside the polar vortex on PSC converting reservoir species in active chlorine. In addition, it satisfactorily reproduces the morphology of the continuous O3 decline as shown by the satellite during the investigated period, with a tendency, however, to underestimate the total column values inside the polar vortex during late winter. As possible causes of this model/observation difference we suggest an incorrect estimation of the vertical transport and of the tropospheric contribution.

Key words. Atmospheric composition and structure (Middle atmosphere-composition and chemistry) Meterology and atmospheric dynamics (middle atmosphere dynamics)

Publications Copernicus
Download
Citation
Share