Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 20, issue 2
Ann. Geophys., 20, 247–255, 2002
https://doi.org/10.5194/angeo-20-247-2002
© Author(s) 2002. This work is distributed under
the Creative Commons Attribution 3.0 License.
Ann. Geophys., 20, 247–255, 2002
https://doi.org/10.5194/angeo-20-247-2002
© Author(s) 2002. This work is distributed under
the Creative Commons Attribution 3.0 License.

  28 Feb 2002

28 Feb 2002

Estonian total ozone climatology

K. Eerme, U. Veismann, and R. Koppel K. Eerme et al.
  • Tartu Observatory, Tõravere, 61602, Tartumaa, Estonia
  • Correspondence to: K. Eerme (kalju@aai.ee)

Abstract. The climatological characteristics of total ozone over Estonia based on the Total Ozone Mapping Spectrometer (TOMS) data are discussed. The mean annual cycle during 1979–2000 for the site at 58.3° N and 26.5° E is compiled. The available ground-level data interpolated before TOMS, have been used for trend detection. During the last two decades, the quasi-biennial oscillation (QBO) corrected systematic decrease of total ozone from February–April was 3 ± 2.6% per decade. Before 1980, a spring decrease was not detectable. No decreasing trend was found in either the late autumn ozone minimum or in the summer total ozone. The QBO related signal in the spring total ozone has an amplitude of ± 20 DU and phase lag of 20 months. Between 1987–1992, the lagged covariance between the Singapore wind and the studied total ozone was weak. The spring (April–May) and summer (June–August) total ozone have the best correlation (coefficient 0.7) in the yearly cycle. The correlation between the May and August total ozone is higher than the one between the other summer months. Seasonal power spectra of the total ozone variance show preferred periods with an over 95% significance level. Since 1986, during the winter/spring, the contribution period of 32 days prevails instead of the earlier dominating 26 days. The spectral densities of the periods from 4 days to 2 weeks exhibit high interannual variability.

Key words. Atmospheric composition and structure (middle atmosphere – composition and chemistry; volcanic effects) – Meteorology and atmospheric dynamics (climatology)

Publications Copernicus
Download
Citation