Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Ann. Geophys., 15, 692-702, 1997
https://doi.org/10.1007/s00585-997-0692-z
© European Geosciences Union 1997
 
30 Jun 1997
CUTLASS/IMAGE observations of high-latitude convection features during substorms
T. K. Yeoman1 and H. Lühr2 1Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
2GeoForschungsZentrum Postdam, Telegrafenberg, D-14473 Postdam, Germany
Abstract. The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2- and ΣKp for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding ~600 m s–1 are observed with a duration of ~5 min and a repetition period of ~8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.

Citation: Yeoman, T. K. and Lühr, H.: CUTLASS/IMAGE observations of high-latitude convection features during substorms, Ann. Geophys., 15, 692-702, https://doi.org/10.1007/s00585-997-0692-z, 1997.
Publications Copernicus
Download
Share