Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.621 IF 1.621
  • IF 5-year value: 1.614 IF 5-year 1.614
  • CiteScore value: 1.61 CiteScore 1.61
  • SNIP value: 0.900 SNIP 0.900
  • SJR value: 0.910 SJR 0.910
  • IPP value: 1.58 IPP 1.58
  • h5-index value: 24 h5-index 24
  • Scimago H index value: 80 Scimago H index 80
Volume 15, issue 3 | Copyright
Ann. Geophys., 15, 314-326, 1997
https://doi.org/10.1007/s00585-997-0314-9
© European Geosciences Union 1997

  31 Mar 1997

31 Mar 1997

Self-consistent modelling of the daytime electron density profile in the ionospheric F region

A. Mikhailov* and K. Schlegel A. Mikhailov and K. Schlegel
  • Max-Planck-Institut für Aeronomie, Postfach 20, D-37189 Katlenburg-Lindau, Germany
  • *Permanent address: Institute for Applied Geophysics, 129128 Rostokinskaya 9, Moscow, Russia

Abstract. A theoretical self-consistent method for the description of daytime Ne(h) profiles in the ionospheric F region measured by EISCAT is proposed. It is based on the use of a theoretical F-region model and measured electron density, Ne(h), electron, Te(h), and ion temperature, Ti(h), and field-aligned plasma drift Vl(h) profiles. The method describes the observed Ne(h) profile with high accuracy for quiet and disturbed conditions. Two versions of the method are considered: in the first the exospheric temperature Tex is derived from a procedure minimizing [log(Ne(h)obs / Ne(h)cal]2, in the second Tex is deduced from the ion energy conservation in the F region. The method allows us to infer from the incoherent-scatter observations: concentrations of atomic oxygen, [O], molecular oxygen, [O2], molecular nitrogen, [N2] the vertical plasma drift, W, the exospheric temperature. Tex, and the shape parameter S in the neutral temperature profile. The ratio ([O+]/Ne) calculated by the theoretical model is used to correct Te(h), Ti(h) and Ne(h) profiles routinely measured with EISCAT which are known to depend strongly on the actual applied ion-composition model. Such a correction is especially important for geomagnetically disturbed periods when the F region is strongly enriched with molecular ions. We conclude that four of the six thermospheric parameters, namely [O], [N2], W and Tex can be confidently inferred from the EISCAT observations, while the other two derived parameters, [O2] ans S are less reliable. The method can be used for the analysis of long-term (seasonal, solar cycle) as well as for day-to-day variations of the thermospheric parameters and the F-region ion composition using daytime incoherent-scatter observations.

Publications Copernicus
Download
Citation
Share