Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 14, issue 6
Ann. Geophys., 14, 589-592, 1996
https://doi.org/10.1007/s00585-996-0589-2
© European Geosciences Union 1996
Ann. Geophys., 14, 589-592, 1996
https://doi.org/10.1007/s00585-996-0589-2
© European Geosciences Union 1996

  30 Jun 1996

30 Jun 1996

The convection electrojet and the substorm electrojet

Y. Kamide and R. Nakamura Y. Kamide and R. Nakamura

Abstract. Enhancements in the auroral electrojets associated with magnetospheric substorms result from those in either the electric field or the ionospheric conductivities, or both. Their relative importance varies significantly, even during a single substorm, depending on the location as well as on the substorm phases. It is predicted that different parts of the electrojets tend to respond in different ways to substorm activity. The unprecedented, unique opportunity for CLUSTER spacecraft observations of electric/magnetic fields and precipitating particles, combined with radar measurements of ionospheric quantities and with ground magnetometers, will provide us with crucial information regarding the physical nature of the separation between the "electric field-dominant'' and "conductivity-dominant'' auroral electrojets. This study also discusses the implications of these two auroral-electrojet components in terms of solar wind-magnetosphere-ionosphere interactions.

Publications Copernicus
Download
XML
Citation