Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 14, issue 5
Ann. Geophys., 14, 557–565, 1996
https://doi.org/10.1007/s00585-996-0557-x
© European Geosciences Union 1996
Ann. Geophys., 14, 557–565, 1996
https://doi.org/10.1007/s00585-996-0557-x
© European Geosciences Union 1996

  31 May 1996

31 May 1996

Gravity wave exclusion circles in background flows modulated by the semidiurnal tide

L. Zhong, A. H. Manson, L. J. Sonmor, and C. E. Meek L. Zhong et al.

Abstract. In this short paper the exclusion circles and vertical phase locities for gravity waves launched from the ground into a time-varying wind are studied using a ray-tracing technique. It is shown that waves with initial observed phase speeds that should place them within the local temporally varying exclusion circle, are often Doppler shifted outside of the circle. This, and the finite lifetime of some critical levels, allow waves to survive the critical layer and reach higher altitudes. Also, for slower phase-speed waves, the temporally varying wind can shift the observed frequency to negative values, so that the observed phase motions will be opposite (i.e. horizontally reversed and vertically upward), even though the energy still propagates upward. This effect can also cause the phase velocity to move inside the local exclusion circle. Due to the directional filtering of wave sources by the stratospheric wind, the percentage of such reverse-propagating waves will change systematically with local time and height in our simplified but realistic model. These results are related to ground-based systems, optical and radar, which sample the wind field and gravity waves in the middle atmosphere.

Publications Copernicus
Download
XML
Citation