Journal cover Journal topic
Annales Geophysicae An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 1.585 IF 1.585
  • IF 5-year value: 1.698 IF 5-year
    1.698
  • CiteScore value: 1.62 CiteScore
    1.62
  • SNIP value: 0.820 SNIP 0.820
  • IPP value: 1.52 IPP 1.52
  • SJR value: 0.781 SJR 0.781
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 83 Scimago H
    index 83
  • h5-index value: 24 h5-index 24
Volume 14, issue 5
Ann. Geophys., 14, 533-537, 1996
https://doi.org/10.1007/s00585-996-0533-5
© European Geosciences Union 1996
Ann. Geophys., 14, 533-537, 1996
https://doi.org/10.1007/s00585-996-0533-5
© European Geosciences Union 1996

  31 May 1996

31 May 1996

Diurnal and seasonal occurrence of polar patches

A. S. Rodger and A. C. Graham A. S. Rodger and A. C. Graham

Abstract. Analysis of the diurnal and seasonal variation of polar patches, as identified in two years of HF-radar data from Halley, Antarctica during a period near sunspot maximum, shows that there is a broad maximum in occurrence centred about magnetic noon, not local noon. There are minima in occurrence near midsummer and midwinter, with maxima in occurrence between equinox and winter. There are no significant correlations between the occurrence of polar patches and the corresponding hourly averages of the solar wind and IMF parameters, except that patches usually occur when the interplanetary magnetic field has a southward component. The results can be understood in terms of UT and seasonal differences in the plasma concentration being convected from the dayside ionosphere into the polar cap. In summer and winter the electron concentrations in the polar cap are high and low, respectively, but relatively unstructured. About equinox, a tongue of enhanced ionisation is convected into the polar cap; this tongue is then structured by the effects of the interplanetary magnetic field, but these Halley data cannot be used to separate the various competing mechanisms for patch formation. The observed diurnal and seasonal variation in the occurrence of polar patches are largely consistent with predictions of Sojka et al. (1994) when their results are translated into the southern hemisphere. However, the ionospheric effects of flux transfer events are still considered essential in their formation, a feature not yet included in the Sojka et al. model.

Publications Copernicus
Download
XML
Citation