Journal cover Journal topic
Annales Geophysicae An open-access journal of the European Geosciences Union
Ann. Geophys., 27, 2903-2912, 2009
http://www.ann-geophys.net/27/2903/2009/
doi:10.5194/angeo-27-2903-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
22 Jul 2009
Dust specific extinction cross-sections over the Eastern Mediterranean using the BSC-DREAM model and sun photometer data: the case of urban environments
E. Gerasopoulos1, P. Kokkalis2, V. Amiridis3, E. Liakakou1, C. Perez4, K. Haustein4, K. Eleftheratos5,6, M. O. Andreae7, T. W. Andreae7, and C. S. Zerefos5,6 1Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa & V. Pavlou, 15236, P. Penteli, Athens, Greece
2National Technical University of Athens, Physics Department, Athens, Greece
3Institute for Space Applications and Remote Sensing, National Observatory of Athens, I. Metaxa & V. Pavlou, 15236, P. Penteli, Athens, Greece
4Earth Sciences Division, Barcelona Supercomputing Center, Barcelona, Spain
5National Kapodistrian University of Athens, Geology Department, Athens, Greece
6Biomedical Research Foundation, Academy of Athens, Athens, Greece
7Biogeochemistry Department, Max Planck Institute for Chemistry, 55020 Mainz, Germany
Abstract. In this study, aerosol optical depth (AOD) measurements, from a MFR sun photometer operating in Athens, were compared with columnar dust loading estimations, from the BSC-DREAM model, during identified dust events, in order to extract the typical specific extinction cross-section for dust over the area. The selected urban environment of Athens provided us with the opportunity to investigate the mixing of dust and urban pollution and to estimate the contribution of the latter. The specific extinction cross-section for dust at 500 nm was found to be equal to σ500*=0.64±0.04 m2 g, typical for medium to large distances from dust sources, with weak wavelength dependence in the visible and near infrared band (0.4–0.9 μm). The model showed a tendency to underpredict AOD levels for increasing values of the Ångström exponent, indicative of fine particles of anthropogenic origin inside the boundary layer. On average we found an AOD under-prediction of 10–15% for Ångström exponents in the range of 0 to 1 and 30–40% in the range of 1 to 2. Additionally, modelled surface concentrations were evaluated against surface PM10 measurements. Model values were lower than measured surface concentrations by 30% which, in conjunction with large scatter, indicated that the effect of the boundary layer anthropogenic contribution to columnar dust loadings is amplified near the ground.

Citation: Gerasopoulos, E., Kokkalis, P., Amiridis, V., Liakakou, E., Perez, C., Haustein, K., Eleftheratos, K., Andreae, M. O., Andreae, T. W., and Zerefos, C. S.: Dust specific extinction cross-sections over the Eastern Mediterranean using the BSC-DREAM model and sun photometer data: the case of urban environments, Ann. Geophys., 27, 2903-2912, doi:10.5194/angeo-27-2903-2009, 2009.
Publications Copernicus
Download
Share