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Abstract. Very short time series (with lengths of approx-
imately 40 s or 5∼7 wave periods) of wind velocity fluc-
tuations and wave elevation were recorded simultaneously
and investigated using the wavelet bispectral analysis. Rapid
changes in the wave and wind spectra were detected, which
were found to be intimately related to significant energy
transfers through transient quadratic wind-wave and wave-
wave interactions. A possible pattern of energy exchange
between the wind and wave fields was further deduced. In
particular, the generation and variation of the strong wave-
induced perturbation velocity in the wind can be explained by
the strengthening and diminishing of the associated quadratic
interactions, which cannot be unveiled by linear theories. On
small time scales, the wave-wave quadratic interactions were
as active and effective in transferring energy as the wind-
wave interactions. The results also showed that the wind tur-
bulence was occasionally effective in transferring energy be-
tween the wind and the wave fields, so that the background
turbulence in the wind cannot be completely neglected. Al-
though these effects are all possibly significant over short
times, the time-localized growth of the wave spectrum may
not considerably affect the long-term process of wave devel-
opment.

Keywords. Meteorology and atmospheric dynamics
(Ocean-atmosphere interactions) – Oceanography: physical
(Air-sea interactions; Surface waves and tides)

1 Introduction

As Lavrenov (2003) puts it, the dynamic ocean is a complex
system that involves five distinguishable time scales. The
smallest scale,τ1, is the period of wave movement fluctu-
ations, which varies from several to 10 s. Wave movements
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connected with a wave group represent the second time scale,
τ2, from 10 to 100 s (or 10∼15τ1). The “quasi-collisions”
happen on the third scale,τ3≈103 s. The wave field changes
occurred within a period of 3∼6 h representτ4≈104 s. Sig-
nificant changes in the wind wave spectra and in all its pa-
rameters usually occur on this time scale. The most likely
largest time scale,τ5≈105 s, is a synoptic range for long-term
ocean wave evolution. Earlier investigations of ocean waves
were primarily centered around the wave spectrum that is
based on the assumption of quasi-stationarity (e.g. Hassel-
mann, 1962, 1963; Komen et al., 1994). This assumption
essentially prohibits studies of the evolution of ocean waves
on time scales smaller thanτ4. However, Lavrenov (2001)
found that the spectral maximum frequency may experience
a discontinuous variation that could be explained by “quasi-
collisions” onτ3.

One may further wonder what is happening and whether
it is all trivial or random over even shorter times thanτ3.
With the aid of the wavelet analysis, we investigated field-
observed wind and wave time series as short as 40 s, which
brought our scope all the way down to the scale ofτ2. Unlike
its conventional Fourier counterpart, the wavelet-based anal-
yses have the capacity to examine significantly shorter time
series with an acceptable level of statistical noise. Over such
a short time that is less than one minute or 10 typical wave
periods, the governing physics might be very different from
those for considerably larger time scales such as 20 min. We
envisaged that the work would provide useful information on
two issues for short-time (almost instantaneous) wind-wave
interactions.

One issue concerns the roles of the wave-wave and wind-
wave resonant interactions. Phillips (1960) first studied the
resonant interactions among a triad of gravity wave trains
on deep water. It was found that the dispersion relation for
this particular configuration does not admit any second-order
resonant interaction, while the resonant interaction is pos-
sible for tertiary waves. Hasselmann was able to quantify
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the energy change rate of the frequency components in a
continuous wave spectrum (Hasselmann, 1962, 1963). He
also found that, owing to the weak nonlinearity in the funda-
mental equations, the wave spectrum only undergoes a slow
change with a typical interaction time of a few hours (Has-
selmann, 1962). As Phillips (1974) summarized, limited by
the weak nonlinearity in small-amplitude surface waves, the
resonant wave-wave interactions are not only selective but
also very slow. Up to date, ocean wave modeling still relies
on such “slow motions” for the component of wave-wave in-
teractions (Komen et al., 1994). Apparently, no significant
energy change will take place on a small time scale such as
τ2. In wind-generated waves, one extra mechanism would
naturally be about wind forcing. With turbulent winds, the
coupled wind-wave interaction is not weakly nonlinear as
for pure gravity waves. In this situation, the influence of the
turbulent boundary layer on the surface gravity waves is of
first-order, which might admit more rapid local variation of
the wave spectrum. This suspicion was never well examined
with field data, due to the difficulty in processing short data
records in the conventional framework of the Fourier anal-
ysis. In the present work, it became simpler using wavelet
analysis.

The other major issue when time-localized variations are
of interest is the role of the wind velocity fluctuations, de-
fined here as everything in the wind velocity but the mean,
which was often underestimated by existing mathematical
and numerical modeling efforts in the coupled wind-wave
field. For example, among the pioneering works on the
numerical simulation of the air-wave interactions, Janssen
(1982, 1991) developed a quasi-linear theory that still has
great impact on the latest numerical models. Janssen’s mod-
eling neglects the effect of turbulent fluctuations, as well as
nonlinearity. Admittedly, the negligence of the background
turbulence in the atmospheric boundary layer did not seem
to arouse serious discrepancies between the simulated and
the observed results. Besides the modeling purposes, how-
ever, we still are interested in whether these assumptions or
omissions reveal the true physics of the problem. The physi-
cal bases cannot be examined on a large time scale, because
many meaningful events would be averaged out.

It was envisioned that this work would serve as a demon-
stration of the application of wavelet higher-order spectral
analysis in studying ocean wave problems, and as a better
understanding of the physics of wind-wave interactions on
short time scales.

2 Field observation

2.1 Field measurements

The wind and wave data used in this study were recorded
from the NOAA National Data Buoy Center (NDBC) 3-
m discus buoy 45011 deployed during autumn of 1997 in

nearshore eastern Lake Michigan at 10-m water depth at
43.02◦ N, 86.27◦ W, about 1.5 km southwest of Grand Haven,
Michigan. The NDBC 45011 buoy, similar to the ones
used in the Surface Wave Dynamics Experiment (SWADE)
(Weller et al., 1991), was equipped with a Datawell HIPPY
40 heave-acceleration, a pitch and roll sensor, a two-axis
magnetometer, compasses, barometers, and water temper-
ature sensors. A twin-propeller wind anemometer was
mounted on the mast of the buoy 5 m above the design wa-
terline of the buoy hull. Special for 45011 measurements
was the simultaneous time series recording for both wind and
waves at the same sampling frequency of 1.70667 Hz. A por-
tion of the available wind and wave time series data during a
generally growing wave episode is what we have used in the
following analysis.

As well known, special attention should be paid to the
quality of the buoy-measured wind signals due to the fact
that the motions of the buoy itself, resulting from the motion
of the waves, may seriously contaminate the wind measure-
ments. Extensive examinations have been conducted to com-
pare the NDBC buoy winds with those recorded from other
nearby buoys of the same kind, from stationary platforms
(e.g. Gilhousen, 1987), and from ships (Gilhousen, 2006).
Their comparisons show clearly that the 3-m buoy winds are
in excellent agreement with platform winds, which are as-
sumed to be correct, in both aspects of long-term statistics
and detailed time series patterns. Of particular interest to
the present study is the high correlation of 0.971 between
the wind data measured from a 3-m discus buoy and from a
platform (Gilhousen, 1987), implying good data quality up
to sufficiently small scales. Furthermore, the wavelet-based
bispectral analysis, as used here, is capable of detecting non-
linear relations even if there is some level of errors in the
measured data (Van Milligen et al., 1995).

A preliminary analysis of the full-length wind and wave
data sets yielded the following statistics. The average wind
speed at the measuring elevation,U5, grew from approxi-
mately 5 m s−1 to 11 m s−1 (Fig. 1). The turbulence inten-

sity of the streamwise wind component, defined as
√
u2/U5

(u denoting the streamwise wind velocity fluctuation) was
34.6% forU5 being a median value of 8.5 m s−1, indicating
a high level of fluctuation in the wind. Since the fluctua-
tions were obtained by simply subtracting the average from
the wind velocity time series, the wave-induced perturbation
velocity should also contribute to this turbulence intensity.

2.2 Long-term wind and wave spectra

For an overall assessment of the long-term wave growth
process, three representative episodes, starting att=5859 s,
11 719 s, and 17 578 s, were taken with 211 data points in
each. Given a sampling frequencyFs=1.7 Hz, the length
of each episode was 20 min. Episode centres are indicated
by arrows in Fig. 1 against a panorama of the wave growth
process. Also notable from Fig. 1 is the coincident growth
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Fig. 1. Simultaneous long-term wind and wave growth processes;
arrows indicate the centres of the three episodes for Figs. 2 and 3.

of both the magnitude and fluctuation of the winds. Fig-
ure 2 shows the wave spectra for the three episodes, where
η denotes the wave elevation andPηη denotes the (Fourier-
based) wave spectrum. The three spectra curves clearly rep-
resent three sequential stages of wave growth. In particular,
the equilibrium range with a−4-power law (Phillips, 1985)
gradually came into form in the high frequency band from
f=0.2 Hz tof=0.6 Hz.

The Fourier spectra of the wind velocity fluctuations,Puu,
are shown in Fig. 3. One unusual characteristic that can be
readily observed is the sharp spectral peak at approximately
f=0.4 Hz for all three episodes of wave growth. This large
and sharp spectral peak seems to be superimposed on Kol-
mogoroff’s −5/3-power region off>0.06 Hz. It is known
that, in the absence of strong wave impact, the atmospheric
boundary layer is nearly isotropic, and the spectrum of the
wind velocity fluctuations has a−5/3-power dependency in
the inertial subrange (Elliott, 1972). For the present case,
therefore, the large peak aroundf=0.4 Hz should be at-
tributed to the waves through a mechanism that is effective
but has not yet been sufficiently understood.

Consequently, the wind and wave spectra have revealed
that the waves, whose peak frequency is approximately
0.2 Hz, induced a very significant frequency component in
the wind fluctuations at its double frequency, 0.4 Hz. Such
highly active wave-induced frequency components in the
wind at a doubled frequency of the wave peak frequency
were rarely reported or studied previously. (There were
doubts about the validity of the large peak atf=0.4 Hz in
the wind spectrum, since such a phenomenon was not often
reported in the literature. The significance of this peak, i.e.
it is natural but not an artifact, can be partially justified by
Fig. 11. This peak is very active and effective in nonlinear
interactions during stage I, while it becomes completely la-

10
−2

10
−1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

P
ηη

freq (Hz)

−4 

Fig. 2. Fourier wave spectra in three episodes (starting att=5859 s,
11 719 s, and 17 578 s, respectively) of wave development; the du-
ration of each episode was approximately 20 min.
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Fig. 3. Fourier wind velocity spectra in the same three episodes as
those in Fig. 2.

tent during stage II. It is hence reasonable to believe that, if
the peak had been created by artificial factors, such as buoy
vibrations, its effect on the data would have been persistent
throughout the whole data set. This is obviously contrary to
the results in Fig. 11.)

Although the wind fluctuation consists of the wave-
induced and the background turbulence components, they
can be easily distinguished based on the wind velocity spec-
trum. More specifically, the narrow band aroundf=0.4 Hz
is considered to be wave-induced, while the range from
f=0.06 Hz tof=0.3 Hz is primarily affected by the back-
ground turbulence. The two subranges are indicated in Fig. 3.
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3 Wavelet-based spectral analysis

In the cases where instantaneous behaviours of water waves
are of particular interest, the Fourier-based analyses will re-
sult in either high variance or excessive bias in the estimated
spectral moments. As a remedy, the wavelet analysis can be
employed. General theories of the wavelet analysis can be
found in Mallat (1998). In the remainder of this section, we
only give a brief introduction to the wavelet spectral analysis
that is relevant to the present work.

3.1 Definitions

Continuous wavelet transform was implemented. The Morlet
wavelet that can be generated from the mother wavelet,

ψ(t) = π−1/4eiω0te−t
2/2 (1)

(ω0 set at 6.0 for the admissibility condition), through con-
tinuous translations in time and dilations of the scale was
used. Using the Morlet wavelets as a basis, a real-time sig-
nal, x(t), can be mapped into a two-dimensional time-scale
domain through the transform

Wx(a, τ ) =

∞∫
−∞

x̂(f )ψ̂∗
a,τ (f )df , (2)

whereWx is the wavelet coefficient of the signalx(t), f is the
frequency variable that is approximately related to the scale
parameter,a, through the conversionf=fc/a (fc=0.9394
for the Morlet wavelets), the “hat” over a variable denotes
the Fourier image of a time signal, and * denotes the com-
plex conjugate. The temporal variations are thus preserved,
which is an advantage over the conventional Fourier trans-
form.

The wavelet power spectrum of a time seriesx(t) over a
periodT is defined as

Qxx(f ) =
1

TfcCg

∫
T

W ∗
x (a, τ )Wx(a, τ )dτ , (3)

whereCg is the admissibility constant (Addison, 2002). The
wavelet power spectrum is conceptually equivalent to the
Fourier power spectrum based on Parseval’s theorem. The
two types of power spectrum are not identical to one an-
other, in that the wavelet power spectrum is additionally de-
termined by the chosen wavelet functions (Addison, 2002).
The wavelet cross spectrumQxy(f ) between two time sig-
nals,x(t) andy(t), can be defined similarly. The wavelet
linear coherence, the normalized cross spectrum to have val-
ues bounded by zero and one, is defined as

Lxy(f ) =

∣∣Qxy(f )
∣∣2

Qxx(f )Qyy(f )
. (4)

The wavelet auto-bispectrum of a time signal,x(t), has the
form of

Bxxx(f1, f2) =

∫
T

W ∗
x (f, τ )Wx(f1, τ )Wx(f2, τ )dτ , (5)

with f=f1+f2. The wavelet cross-bispectrumByxx be-
tween two time series,x(t) andy(t), can be defined simi-
larly. They also can be normalized to have values bounded
by zero and unity, referred to as the auto-bicoherence,b2

xxx ,
and the cross-bicoherence,b2

yxx , respectively. For brevity,
only the definition of the wavelet cross-bicoherence is given
here:

b2
yxx(f1, f2) = ∣∣Byxx(f1, f2)

∣∣2(∫
T

|Wx(f1, τ )Wx(f2, τ )|
2 dτ

)(∫
T

∣∣Wy(f, τ )
∣∣2 dτ) . (6)

Other definitions and explanations can be found in Ge
(2004).

For the interpretation of the results in Figs. 6–9, the cross-
bicoherence value, for example, at the point(fi, fj ) indi-
cates the level of quadratic (phase) coupling among the fre-
quency components atfi andfj , respectively, in one time
signal and the frequency component atf=f1+f2 in the other
time signal.

3.2 Phase coupling

The physical meaning of the bispectral moments, both
Fourier-based and wavelet-based, is intimately related to the
concept of phase coupling. A phase coupling occurs, for ex-
ample, when a triad of complex frequency components atf1
andf2, respectively, ofx(t) and atf=f1+f2 of y(t) have a
persistent relation of

α − (α1 + α2) = constant (7)

for a durationT . In this relation,α, α1, andα2 are the phase
angles of the spectral components at frequenciesf , f1, and
f2, respectively. During the phase coupling, the time inte-
gral in Eq. (6) will lead to a near-one bicoherence. In the
remainder of this paper, the phase coupling will be referred
to as quadratic coupling or quadratic interaction, in order to
stress its similarity to Phillips’ second-order resonant interac-
tion among three frequency components. Despite the resem-
blance, phase coupling is not equivalent to the widely dis-
cussed resonant interaction, which also requires a resonant
condition for the wave number vectors of the participating
wave trains or frequency components. In this sense, the reso-
nant interaction is a much more stringent type of interaction.
Over a very short time, on the other hand, if the waves do not
change the propagation direction significantly, the two types
of interactions will be nearly identical.
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Fig. 4. Wavelet power spectra of the wind fluctuations in stages I
and II; arrows highlight the changes of the energy level in major
frequency components.

Unlike the bicoherence, which purely reveals the nonlin-
earity in the system, the bispectrum value is sensitive to the
magnitudes (or modules) of the involved frequency compo-
nents (see, e.g. Eq. 5). Therefore, even if the nonlinearity
is not significant, the bispectrum still can have a great value
when the modules of the contributing frequency components
are large. The bispectrum is hence especially useful when
the energy transfer among the participating components is
of interest. A large bispectrum value often reveals effective
energy transfer through the quadratic interaction, although
the interaction itself might be weak. Conversely, a signif-
icant quadratic coupling may not facilitate effective energy
transfer, simply because none of the involved components
contains much energy.

3.3 Statistical noise

As a result of the non-orthogonality of the Morlet wavelet
family, the noise level for the wavelet linear coherence is es-
timated as

εL(f ) ≈ 2

(
Fs

Nf

)1/2

, (8)

and that for the wavelet auto- or cross-bicoherence is esti-
mated as

εb(f1, f2) ≈

(
Fs

2N min(|f1| , |f2| , |f1 + f2|)

)1/2

, (9)

whereN is the number of data points in the studied time
series (Van Milligen et al., 1995). It is obvious that both
types of noise levels might be dominant at very low frequen-
cies, especially when the studied time series is quite short.
In such cases, inferences can be drawn only at higher fre-
quencies, and caution must be taken when interpreting the
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Fig. 5. Wavelet power spectra of the wave elevation in stages I
and II; arrows highlight the changes of the energy level in major
frequency components.

results at low frequencies. In Sects. 4 and 5, only the results
of auto- and cross-bicoherence above their local noise levels
are shown (Figs. 6–9). For the bispectra, we focus on inter-
mediate and high frequency ranges where the noise level is
low. The statistical noise level is explicitly shown in Fig. 10
for an illustration of its distribution.

4 Results

Two consecutive time series of wind velocity fluctuations,
starting att=11 593 s, were taken from the long record. Each
time series consists of only 70 data points, or approximately
40 s in length. They are denoted asu1 andu2, respectively.
The two 70-point segments are referred to as stage I and
stage II, respectively, hereafter. Simultaneous wave elevation
series, denoted asη1 andη2, were also investigated.

4.1 Wavelet power spectra of the wind fluctuations and the
waves

The wavelet power spectra of the wind velocity fluctuations,
Quu, are presented in Fig. 4. In addition to the insignifi-
cant difference between the two spectra at low frequencies
(f<0.2 Hz), the energy centered aroundf=0.4 Hz consid-
erably decreased by a factor of 6 from stage I to stage II,
which does not appear to be due to randomness. The wavelet
power spectra of the wave elevation,Qηη, were estimated
for the same two stages and are shown in Fig. 5. During
the two stages, the wave energy drops at aroundf=0.1 Hz,
0.4 Hz, and 0.5 Hz, and increases at approximatelyf=0.2 Hz
(by a factor greater than 2). All these variations represent a
rapid growth (including decay) of the wind and wave spec-
tra, which cannot be obtained using Fourier-based analyses
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Fig. 6. Contours of(a) the wavelet bicoherenceb2
ηηu (contour lev-

els: 0.45 and 0.8) and(b) the wavelet bispectrumBηηu (contour lev-
els: 0.7 and 0.9 times of the maximum value in stage I with extreme
values at low frequencies eliminated) in stage I (blue contours) and
stage II (red contours), respectively; all points on the black line in
(a) have coordinates summed to be 0.1 Hz.
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Fig. 7. Contours of(a) the wavelet bicoherenceb2
uuη (contour lev-

els: 0.45 and 0.8) and(b) the wavelet bispectrumBuuη (contour lev-
els: 0.5 and 0.7 times of the maximum value in stage I with extreme
values at low frequencies eliminated) in stage I (blue contours) and
stage II (red contours), respectively; all points on the black lines in
(a) and (b) have coordinates summed to be 0.2 Hz.

over such short times. We postulate that these rapid changes
in the wind and wave spectra are caused by, or at least re-
lated to, particular nonlinear interactions among frequency
components.

4.2 Nonlinear wind-wave interactions

Figure 6 shows the wavelet bicoherence,b2
ηηu, and bispec-

trum,Bηηu, in the two stages. It is evident in panel (b) that
high-level blue contours are centered around the point (0.2,
0.2), which can be interpreted as a significant energy transfer
through the nonlinear (quadratic) interaction betweenη(0.2)
andu(0.4) during stage I. (Here, for example,η(0.2) denotes
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Fig. 8. Contours of(a) the wavelet bicoherenceb2
ηηη (contour lev-

els: 0.45 and 0.8) and(b) the wavelet bispectrumBηηη (contour lev-
els: 0.8 and 0.9 times of the maximum value in stage I with extreme
values at low frequencies eliminated) in stage I (blue contours) and
stage II (red contours).
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Fig. 9. Contours of(a) the wavelet bicoherenceb2
uuu (contour lev-

els: 0.45 and 0.8) and(b) the wavelet bispectrumBuuu (contour lev-
els: 0.4 and 0.6 times of the maximum value in stage I with extreme
values at low frequencies eliminated) in stage I (blue contours) and
stage II (red contours).

the frequency component atf=0.2 Hz in the waves, and sim-
ilarly, u(0.4) denotes the frequency component atf=0.4 Hz
in the wind fluctuations.) Since the red contours at the same
point are almost absent, this interaction (energy transfer) oc-
curred only in stage I but disappeared in stage II. The energy
in η(0.2) increased from stage I to stage II yet, meanwhile,
the energy atu(0.4) decreased (Figs. 4 and 5), we there-
fore postulate that in stage I, energy was transferred from
η(0.2) to u(0.4) through the quadratic interaction at (0.2,
0.2), but, as the interaction became interrupted in stage II,
η(0.2) ceased to provide energy foru(0.4), which resulted in
a quick decline in the energy ofu(0.4). It is also observed
from Fig. 6a thatu(0.1) became nonlinearly coupled with
various frequency-component pairs inη2, as indicated by the
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black line in the figure on which the sum of the coordinates
is invariably 0.1. Nevertheless, the absence of corresponding
contours in Fig. 6b reveals that these nonlinearities, however
significant, are not effective in energy transfer. This observa-
tion agrees with Fig. 4, where the energy level atu(0.1) did
not change considerably.

Figure 7 shows theb2
uuη andBuuη values that are com-

plementary to the results in Fig. 6. It is noted from both
b2
uuη andBuuη that the component,η(0.2), became nonlin-

early coupled with a broad range of frequency-component
pairs inu in stage II (Fig. 7a). Many of those interactions
resulted in effective energy transfer, as shown in Fig. 7b.
Since, in stage II,η(0.2) underwent a rapid increase, it is
likely that η(0.2) received energy from these interacting fre-
quency components, such asu(0.05), u(0.1), u(0.15), and
u(0.3) during stage II, while these energy transfer patterns
were not at work in stage I. Another evident energy transfer
occurred in stage I at (0.5,−0.4) in Fig. 7b, indicating an
energy transfer supported by the nonlinear coupling among
u(0.5),u(0.4), andη(0.1). This energy-transfer channel dis-
appeared in the following stage. Noting the decreased energy
in all three components from stage I to stage II, we speculate
that η(0.1) might be active in passing energy tou(0.4) and
u(0.5) in stage I. In stage II, however, this energy-transfer
channel became broken, which partially caused an energy
decrease in bothu(0.4) andu(0.5). Although the energy
expense ofη(0.1) reduced in stage II, its energy level still
dropped slightly due to other factors. This interpretation cer-
tainly should be consistent with all other results.

4.3 Nonlinear interactions within the wind fluctuations and
the waves

Figure 8 shows different patterns of quadratic wave-wave in-
teractions for the two stages. Firstly, the bispectrum value
for the coupling betweenη(0.25) andη(0.5) became very
large in stage II, as seen from the red contours around (0.25,
0.25) in Fig. 8b. Since the energy ofη(0.25) increased and
that ofη(0.5) dropped from stage I to stage II, energy might
have been transferred fromη(0.5) toη(0.25) during stage II,
but the same group of components did not transfer signifi-
cant energy to each other in stage I. Secondly, the coupling
around the point (0.1, 0.1) in Fig. 8b manifests a transient
energy transfer fromη(0.2) toη(0.1) that was only effective
in stage I, based on the energy changes at the correspond-
ing frequency components across these two stages. Thirdly,
the high-level contours around the point (0.2, 0.1) in Fig. 8b
reveal that the frequency componentη(0.1) started to feed
significant energy intoη(0.2) andη(0.3) in stage II through
a weak quadratic interaction that cannot be seen at the corre-
sponding point in Fig. 8a. This interpretation is in agreement
with that for the coupling at (0.5,−0.4) in Fig. 7b. It there-
fore appears that, in stage I,η(0.1) provided significant en-
ergy foru(0.4) andu(0.5) of the turbulent wind field through
the associated wind-wave interaction, and, in the subsequent

stage, it continued to pass energy toη(0.2) andη(0.3) through
a quadratic wave-wave interaction. As a result, the frequency
componentη(0.1) had an energy deficit at the end of stage II.
Lastly, the coupling around (0.2, 0.2) in Fig. 8b is identified
in both stages, although the strength of the energy transfer
associated with this interaction appears to be greater during
stage II. Based on the energy changes atη(0.2) (increased)
and atη(0.4) (decreased) from stage I to stage II, it is very
likely that η(0.4) passed more energy toη(0.2) through the
corresponding quadratic coupling in stage II than it did in
stage I.

Quadratic interactions among frequency components of
the wind velocity fluctuations are shown in Fig. 9. The only
quadratic coupling that allowed for effective energy trans-
fer is indicated by the blue contours around the point (0.4,
0.1) in Fig. 9b. This quadratic coupling supported an en-
ergy transfer primarily within the wave-induced peak during
stage I, since the energy inu(0.1) did not seem to change
much. Therefore, it is likely thatu(0.5) was feeding energy
into u(0.4) only during stage I, and the interruption of this
energy-transfer channel in stage II partially caused the de-
crease of the energy inu(0.4). It is interesting to note that
no discernible energy-containing coupling can be identified
during stage II, although various nonlinear interactions were
still active.

4.4 Linear relation between the wind fluctuations and the
waves

The linear coherenceLuη, between the wind fluctuations and
the waves in the two stages, was also estimated (Fig. 10).
Similar to the quadratic interactions, the patterns of the linear
coupling also vary rapidly throughout the frequency range
under study. It is notable that the linear coherence declined
from stage I to stage II in a broad range fromf=0.35 Hz to
f=0.7 Hz, which is primarily the wave-induced range. Based
on the coincidence of this range and the range in which the
wind and wave energies both dropped significantly (Figs. 4
and 5), and noticing that the linear coherence is a normalized
quantity that is not affected by the magnitudes of the inter-
acting components, we believe that the linear interaction is a
different mechanism for energy transfer. More specifically,
the wave-induced wind velocity had a direct interplay with
the waves in the same frequency range, fromf=0.35 Hz to
f=0.7 Hz. This direct interaction can be represented by the
level of the linear coherence, so that the wave-induced wind
component would have the same frequency as the underlying
waves. Furthermore, the rapid drop of the linear coherence
atf=0.2 Hz from stage I to stage II reveals that the linear en-
ergy transfer mechanism became absent at this frequency in
stage II. Hence, the significant increase of energy inη(0.2)
during stage II was primarily a result of nonlinear interac-
tions in that stage.
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Fig. 10. Wavelet linear coherence between the wave and the wind
fluctuations in stages I and II; arrows highlight the changes of the
coherence level at major frequency components.

5 Further discussion

A possible structure of energy transfers during the two short
stages was deduced in the preceding section by inspecting
and comparing the wavelet-based linear coherence and bis-
pectral moments. All detected linear and quadratic interac-
tions among frequency components that helped transfer con-
siderable energy are summarized in Fig. 11. During stage I,
η(0.1) andη(0.2) were two major energy sources for the
wave-induced velocity component of the wind,u(0.4) and
u(0.5) (as revealed by Figs. 2 and 4). In contrast, during
stage II,η(0.2) ceased to energetically support the perturba-
tion velocity in the wind, which partially resulted in the en-
ergy increase inη(0.2). Moreover,η(0.2) became actively
coupled with various wind velocity components,u(0.05),
u(0.1), u(0.15), andu(0.3), in stage II, a dramatically dif-
ferent pattern of quadratic interactions. These couplings also
were responsible for the energy increase ofη(0.2), although
the detailed directions of energy exchange for every involved
frequency component cannot be unambiguously determined.
Noticing from Figs. 2 and 4 that the frequency compo-
nents,u(0.05), u(0.1), u(0.15), andu(0.3), were mostly in
the inertial subrange (the−5/3-power region) instead of the
wave-induced spectral peak, these quadratic couplings rep-
resent the interplay between the wave componentη(0.2)
and the background turbulence in the wind. Therefore, the
wind turbulence can also nonlinearly interact with particu-
lar wave components (Fig. 7a) and effectively transfer en-
ergy (Fig. 7b). In this sense, completely neglecting the back-
ground turbulence in the wind may lead to misrepresenta-
tion of the true physics of wind-wave interactions, at least on
short time scales.

stage I s tage II

0.1 0.2 0.4

0.4 0.5
0.05

0.1
0.15

0.3

0.3 0.4 0.50.1 0.2 0.25

w ind

w ave

0.2

0.5

Fig. 11.Schematic of major energy transfers in stages I and II: oval
link: between the wind and waves through linear coupling; solid
arrow: between the wind and waves through nonlinear coupling;
dashed arrow: within the wind or the waves through nonlinear cou-
pling; unit of the frequencies: Hz.

In addition to the nonlinear wind-wave couplings, the
wave-wave interaction exhibits a relay of energy transfer
from the high-frequency components to the low-frequency
ones, which is a common characteristic in both stages. For
example, in stage I, energy was transferred fromη(0.4) to
η(0.2), and then was further passed on toη(0.1); in stage II,
similarly, energy was fed fromη(0.5) intoη(0.25), and from
η(0.4) into η(0.2), yet accompanied by an opposite energy
flux from η(0.1) toη(0.2) andη(0.3). The trend of energy
transfer from higher frequencies to low frequencies is consis-
tent with the widely observed downshifting of the wave peak
frequency during wave growth (Hasselmann et al., 1973).
However, the process of such a transient “inverse energy cas-
cading” in the present case appears to be realized by various
types of quadratic interactions, and the process is obviously
more complex than expected. It also is interesting to note,
in the wave-wave interactions, that a high-frequency compo-
nent tended to pass its energy to the component at its half
frequency, the reason for which is not clearly understood.

In comparison to the active energy transfers through non-
linear wave-wave interactions, the quadratic coupling did not
seem to be a major mechanism for energy exchange among
different components in the wind velocity fluctuations. The
wind field, as the anemometer could sense, can simply be
viewed as isotropic turbulence superimposed by a strong
wave-induced velocity component (Fig. 2). Despite the fact
that the wind was full of nonlinear interactions (Fig. 9a),
which probably could be attributed to the eddy motions in
the turbulent boundary layer, these interactions were con-
centrated at low frequencies. The direct interplay of the
wind turbulence and the wave-induced component was not
active. This characteristic of the wind field does not disagree
with the assumption made by Janssen (1989), that the wave-
induced part of the wind velocity could be regarded as unaf-
fected by the wind turbulence.

The tentative pattern of energy transfer shown in Fig. 11
also reveals a cycle of energy exchange between the wind and
wave fields. For example, the general feature of stage I is the
wave-induced wind velocity,u(0.4), being supported by the
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wave component,η(0.2). In stage II, however, energy was
generally fed back from the wind turbulence to the waves,
namelyη(0.2). Of course, the energy of the wind turbulence,
though not fed by the wave-induced component, is typically
compensated by the winds’ mean flow (Tennekes and Lum-
ley, 1972). Another part of the cycle is that the wave-induced
component of the winds gained energy fromη(0.2) in stage I
and then passed some back to the waves through linear cou-
pling. This energy was in turn delivered toη(0.2) by means
of associated wave-wave interactions in stage II. Such cycles
of energy transfer may only be seen locally but not signifi-
cantly influence the long-term patterns of wave development,
so that the current ocean wave models still appear to be ac-
curate on larger time scales.

Besides the nonlinear interactions, the linear coupling also
played an important role in exchanging energy especially
within the wave-induced frequency range. This partially sup-
ports the presumed forms of the wave-induced perturbation
quantities, which have the same frequency as the waves, in
many previous investigations (e.g. Lee, 1972; Al-Zanaidi and
Hui, 1984). In this particular case, however, the wave induc-
tion was more effectively realized through nonlinear mecha-
nisms (Fig. 2). The absence of the wave-induced wind veloc-
ity at the wave peak frequency would make such presumed
forms completely unproductive on any time scale.

We must stress again that there might be alternative
energy-transfer directions for some interactions in Fig. 11.
However, recording every detail of the energy transfer pat-
tern was not our major purpose. What we have learned from
the results is a network of significant energy transfer among
spectral components. We have seen that, at least during short
times, the quadratic wind-wave and wave-wave interactions
can both play critical roles in transferring energy. On the
other hand, high-value contours of the wavelet bicoherence
tended not to match those of the wavelet bispectrum in the
same stage, except for the red contours (i.e. in stage II) along
the straight line in Figs. 7a and b. This inconsistency im-
plies that, in most cases, the active energy transfers were not
a consequence of strong nonlinear interactions, but were re-
alized by the high energy contained in the participating com-
ponents. In this sense, the findings are not essentially con-
trary to Phillips’ resonant interaction theory, since the con-
cept of quadratic coupling encompasses that of second-order
resonant interaction (but certainly is more general), and we
assume that a significant part of the detected quadratic cou-
plings were actually resonant interactions. This consequently
leads to the following thoughts: although the second-order
resonance is not admissible, and the higher-order resonances
are weak and slow (Phillips, 1960), their capability of pass-
ing energy among wave components in field situations might
have been seriously underestimated. The superposition of
various resonant interactions may bring about more rapid
growth of the wave spectrum over a short time (see stage II
of Fig. 11).

6 Conclusions

A time-localized wind-wave interaction (on Lavrenov’sτ2
time scale) was investigated using wavelet bispectral anal-
ysis, a novel signal processing technique especially suitable
for analyzing short time series. From a different perspective
than many previous works, the frequency-domain analyses
shed light on a few issues. It was shown that in field situa-
tions, a first-harmonic wave induced component of the tur-
bulent winds can be strongly excited. This manifested active
nonlinear interactions between the wind and the wave fields.
The wavelet higher-order moments further indicated that the
spectra of the wind fluctuations and waves can undergo rapid
variations that are closely associated with energy exchanges
between the two fields through quadratic couplings. The en-
ergy transfer pattern (Fig. 11) is characterized by two cy-
cles of energy fluxes. In these two cycles, the wave-induced
wind velocity extracted energy from the wave peak compo-
nent through nonlinear couplings and then returned part of it
to the waves through linear interactions. The energy was in
turn passed back to the wave peak component for its contin-
uing growth through quadratic wave-wave interactions (in-
verse energy cascading). In the wind fluctuations, the back-
ground turbulence, which might be continuously supported
by the mean air flow through turbulence production, passed
its (turbulent kinetic) energy to the wave peak components
through quadratic interactions. These findings depicted fine
details in the course of a long-time wave growth process
(Fig. 1). From the results, we learned that all aspects, wind
turbulence, nonlinearity, and the wave-wave interaction, are
critical to the physics of wave growth, although some of the
factors might be negligible for modeling purposes on time
scales larger thanτ4. It also is understood that the interac-
tions identified in the present work are subject to intermit-
tency, so that they should not bear generic statistical sense.

There certainly are other mechanisms that could con-
tribute to the changes in the wind and wave spectra but
could not be detected through the application of the wavelet-
based bispectral analysis. For example, the overlap of the
wave-induced frequency range and the equilibrium range
of the waves brings dissipation into play. The mean wind
velocity, as well as the implications of wave breaking and
wave grouping processes, might also affect the interaction
pattern to some extent. Finally, although the field data have
shown a clear picture of the nonlinear couplings, errors
and uncertainties are inevitable in field measurements. To
ultimately disclose such physical phenomena, carefully-
designed laboratory experiments should be conduced. These
could be the goals for future work.

Disclaimer. This paper has been reviewed in accordance with the
U.S. Environmental Protection Agency’s peer and administrative
review policies and approved for publication. Mention of trade
names or commercial products does not constitute endorsement or
recommendation for use.
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