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Abstract. Advanced Kalman filtering techniques were
used to assimilate pseudo ocean color and profile data
into a complex, three-dimensional coupled physical (POM)-
biogeochemical (ERSEM) model of the Cretan Sea ecosys-
tem. The assimilation schemes, the Singular Evolutive
Partially-Local Extended Kalman (SEPLEK) filter and its
variant called SFPLEK, are based on the standard SEEK fil-
ter in which the Kalman correction is made along a set of
“global” and “local” directions, determined via a so-called
“global-local EOF analysis”. The global functions are used
to represent the ecosystem large-scale variability. They are
allowed to evolve in time in the SEPLEK filter to follow
changes in the model dynamics, while they remain invari-
ant in the SFPLEK filter. The local functions always remain
invariant and are determined in such a way as to indepen-
dently represent the different spatial regimes of the ecolog-
ical model. This helps to improve the estimation of fine-
scale variations while requiring significantly less computa-
tional time compared to the SEEK filter.

Several assimilation experiments were performed to as-
sess the relevance of the assimilation system and to study
its sensitivity to different choices of global/local EOFs. The
SFPLEK filter was used in all the sensitivity experiments in
order to efficiently measure the representativeness of the dif-
ferent set of correction directions, as well as to save com-
putational time. Assimilation results suggest that the use of
global-local correction directions clearly enhances the filter’s
performance under different assimilation setups. The choice
of the local directions should, however, be carefully consid-
ered, taking into account the model regional variability and
the characteristics of the observational system.
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1 Introduction

The Cretan Sea is located in the northwest part of the eastern
Mediterranean Sea. It is linked with the Levantine basin and
the Ionian Sea through the eastern and western straits of the
Cretan Arc. The area is dominated by multiple scale circu-
lation patterns with a complex hydrological structure charac-
terized by mesoscale variability. As described in a 3-D mod-
eling study of the Cretan Sea (Petihakis et al., 2002) the cy-
clonic circulation to the north of the central and eastern part
of the island, in conjunction with the anticyclonic circulation
in the north central part, results in areas of increased produc-
tion around the cyclone, in contrast to the area affected by
the anticyclonic activity. The system is characterized by a
seasonal thermocline (60–80 m) from spring to autumn, sep-
arating the water column into two layers. Primary and bac-
terial production decrease moving offshore while increased
production rates are associated with intense mixing events
and the subsequent nutrient intrusion to the euphotic zone.
Thus most of the primary production in the euphotic zone is
supported by regenerated nutrients. As in all complex sys-
tems, advanced numerical models seem to be the only op-
tion for the simulation of the behavior and the evolution of
the Cretan Sea ecosystem (seeThingstad et al., 1999). Such
models, however, include a significant number of parameters
which are usually provided by the scientific literature, having
been derived through laboratory experiments and in-situ ob-
servations of a similar type ecosystem. To advance beyond
this subjective approach, data assimilation is the process of
finding the model solution which is most consistent with the
observations. These techniques are essential in producing the
most complete picture of the system by integrating all avail-
able knowledges, including observations (in-situ and satellite
data) and biophysical principles (state-of-the-art numerical
models).

Data assimilation methods can be classified into two cate-
gories: variational methods based on the optimal control the-
ory and sequential methods based on the statistical estimation
theory (seeMalanotte-Rizzoli, 1996). Variational methods
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have been considered by a number of studies (Evans, 1999;
Matear, 1995; Harmon and Challenor, 1996). For instance,
Lawson et al.(1996) used the well-known adjoint method
with a simple ecosystem model. The same method has re-
cently been efficiently implemented byFaugeras et al.(2003)
to assimilate chlorophyll data into a 1-D ecosystem model.
Relying on the assumption that a coupled model with a given
set of parameters can reproduce the observations, variational
methods can be strongly sensitive to the unresolved processes
of the model formulation. Although model error can be in
principle, considered by applying a weak constraint inverse
formulation (Natvik et al., 2001), this would make the dimen-
sion of the search so long that unpreconditioned searches for
a best fit would be prohibitive. Sequential methods which al-
low one to incorporate the model error seem, therefore, to be
more appropriate for data assimilation into marine ecosystem
models.

The application of sequential methods for data assimila-
tion into ecosystem models has received more attention dur-
ing the last decade. These techniques are generally derived
from the extended Kalman (EK) filter. Indeed, the implemen-
tation of the EK filter in realistic ocean models is not possible
because of its prohibitive computational burden. Different
simplified forms of this filter have therefore been developed,
basically reducing the dimension of the system through some
kind of projection onto a low dimensional subspace (Cane
et al., 1995; Fukumori and Malanotte-Rizzoli, 1995; Verlaan
and Heemink, 1995). Recently, Monte Carlo techniques were
also introduced to avoid the linearization of the model equa-
tions, leading to the ensemble Kalman methods (Evensen and
van Leeuwen, 1994; Burgers et al., 1998). Allen et al.(2003)
andNatvik and Evensen(2003) demonstrated the effective-
ness of the ensemble Kalman filter for data assimilation with
a 1-D, three-component ecosystem model.

The singular evolutive extended Kalman (SEEK) filter is
a simplified square-root EK filter which has been introduced
by Pham et al.(1998). It basically makes use of singular,
low-rank matrices approximations of the filter’s error covari-
ance matrix. This leads to the application of the Kalman’s
correction only along the directions for which the forecast er-
ror was not sufficiently attenuated by the system. The SEEK
filter has been successfully implemented in several marine
ecosystem models.Carmillet et al.(2001) assimilated ocean
color data with a 3-D biophysical model of the north Atlantic
Ocean, while keeping the correction directions invariant in
time to reduce computational time (called hereafter the Sin-
gular fixed extended Kalman (SFEK) filter). The same filter
has also been used byHoteit et al.(2003) to assimilate real
Oxygen and Nitrate data into a 1-D ecosystem model. The
behavior of this filter can, however, be degraded in the pres-
ence of model instabilities, generally not well represented by
an invariant set of correction directions (Hoteit et al., 2002).
A further extension of the 1-D to a 3-D system has been pre-
sented byTriantafyllou et al.(2003a) with the first applica-
tion of an advanced Kalman filtering technique (ensemble
variant of the SEEK filter, called SEIK filter) for data assim-
ilation into a complex, three-dimensional marine ecosystem

model. In the latter work, however, the number of directions
was limited by the available computational resources.

Limits in computer capacity further complicate the estima-
tion of short-range phenomena with Kalman filtering tech-
niques, generally inefficient when dealing with such intermit-
tent processes (Bennett, 1992). This makes the data assimi-
lation into marine ecosystem models particularly difficult be-
cause an important part of the variability of these models is
governed by fine-scale variations. In this study, the Semi-
Evolutive Partially-Local Extended Kalman (SEPLEK) was
used to tackle these problems. This filter was found to be
more performant than the SEEK filter when dealing with
variables having short-range variability, while requiring sig-
nificantly less computational time (Hoteit et al., 2001). This
is possible due to the ability of adapting the correction di-
rections of this filter to the different spatial regimes of the
system under study. Specifically, global and local functions
are used to better represent the long-range and the differ-
ent short-range variability of the model, using a so-called
“global-local” Empirical Orthogonal Functions (EOF) analy-
sis. Only the global functions are allowed to evolve in time to
follow changes in the model dynamics, while the local func-
tions remain invariant. This significantly reduces the compu-
tational burden compared to the SEEK filter, as the number
of required global functions is generally small. Additional
cost reduction can be further obtained by keeping the global
functions invariant, which also provides the best way to as-
sess the representativeness of a given set of correction direc-
tions (Brasseur et al., 1999). This simplified variant of the
SEPLEK filter was, therefore, used in our sensitivity exper-
iments. It has the same algorithm as the SFEK filter, but
makes use of partially local correction directions. Hence, it
will be called the Singular Fixed Partially Local Extended
Kalman (SFPLEK) filter, in order to remove any confusion
with the (classical) SFEK filter which was also considered in
this study. Note that, although this study is closely related
to that ofTriantafyllou et al.(2003a) mentioned above, since
the same ecosystem model was used in both studies, the re-
sults of this work were not linked to the latter, in order to
avoid a complex comparison between an ensemble filter and
a partially-local extended filter. It is actually more appropri-
ate to carry out this comparison using a local variant of the
SEIK filter, which can be developed in a similar way to the
local Ensemble Kalman filter (Ott et al., 2004). This will be
one of our future objectives. In this study, however, we de-
cided to only focus on the evaluation of the benefits of using
local EOFs in an ecological assimilation system.

Numerical experiments were performed to assess the rel-
evance of the assimilation system and to study its sensitiv-
ity to different parameters and setups. An important part of
this work is devoted to studying the impact of the choice of
local EOFs on the performance of the filter. For instance,
Carmillet et al.(2001) already tested the idea of separating
the euphotic zone from the deep ocean by excluding the deep
ocean variables from the state vector of the filter. This idea is
further extended here while representing these two different
regimes, using independent (vertical) local functions instead
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Fig. 1. Schematic representation of the ecosystem food web.

of neglecting the corrections in the deep ocean. Several hor-
izontal decompositions are also considered to separate the
different spatial regimes in the model. We also show how
the choice of the local EOFs should take into account the
characteristics of the data to be assimilated by limiting the
filter’s corrections to the areas where the data are available.
The paper is organized as follows. In Sect.2 the coupled bio-
physical model is described. Section3 summarizes the basic
elements of the SEPLEK filter. The setup of the assimilation
experiments is presented in Sect.4. The assimilation results
are illustrated and discussed in Sect.5, while the summary
and conclusions are given in Sect.6.

2 The ecosystem model

The biophysical model used in this study emanates from
the coupling of the physical Princeton Ocean Model (POM)
(Blumberg and Mellor, 1987), a primitive equation model
and the generic European Regional Seas Ecosystem Model
(ERSEM) (Baretta et al., 1995), which describes the biogeo-
chemical processes. Both sub models have been customed
tuned and validated for the Cretan Sea, as described in de-
tail in Petihakis et al.(2002) andTriantafyllou et al.(2003a),
producing a rather efficient representation of both physical
and biological components. Although, as mentioned before,
both models have been already described elsewhere, a brief
reference on the key features is considered to be useful for
the readership.

POM is a three-dimensional, time dependent ocean model,
including a higher order turbulence closure scheme (Blum-
berg and Mellor, 1987), with equations being solved through
the use of an Arakawa-C differencing scheme. A sigma coor-
dinates discretization is adopted for the vertical grid dimen-
sion, while for the time integration, a split explicit scheme
is applied, with the barotropic and baroclinic modes being
integrated separately using a leap frog scheme with different
time steps.

Although one of the biggest advantages of ERSEM is
its generic nature, significant modifications were necessary
prior to its application to the oligotrophic Cretan Sea ecosys-
tem, as shown in Fig.1 (Petihakis et al., 2002; Triantafyllou
et al., 2001, 2003b). The use of a functional group idea where
organisms with similar processes are grouped together, rather
than that of a species, increases its portability to any type of
system. This, however, requires a good and sound knowledge
of the role of each biological component by the user. The bi-
otic system encompasses the three major types (producers,
consumers and decomposers), with each type being further
subdivided, thus increasing the required complexity into 88
variables. The backbone of the model is the carbon dynam-
ics, with dynamically variable ratios of the N:P:Si elements.
Although ERSEM offers a full benthic system module, in this
study, due to the increased computer cost, the simple first or-
der benthic returns module was used.

The modeled area is plotted in Fig.2, extending from
23.575◦ E to 26.3◦ E and 35.075◦ N to 36◦ N. A horizontal
resolution of 6 minutes was chosen, thus producing 56×20
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Fig. 2. Simulation domain with locations for profiles (pseudo) observations of nitrate, phosphate, silicate and ammonia.

elements. In an attempt to account for the increased veloc-
ity gradients near the surface, a logarithmic vertical distribu-
tion was used with a total of 30 layers. The model was ini-
tialized with climatological objectively analyzed temperature
and salinity profiles from the Mediterranean Ocean Database
(MODB-MED4), with a resolution of 1/4◦

×1/4◦ for each
MODB layer. Additionally, all initial velocities were set to
zero. Wind stress fields derived from the ECMWF 1979–
1993 6-h reanalysis data and climatological heat flux fields
of Bignami et al.(1995) were used for atmospheric forcing,
while all biological variables were initialized from the 3-D
ecological model for the Cretan Sea (Petihakis et al., 2002).

3 The SEPLEK filter

The estimation of long-range correlations associated with re-
mote observations is a well-known difficulty of Kalman fil-
tering methods (Bennett, 1992; Houtekamer and Mitchell,
1998). To tackle this problem,Houtekamer and Mitchell
(1998) simply used a cutoff radius to exclude the effects of
observations far away from the analysis location. However,
the introduction of an “artificial” radius may be inconsistent
with the correlations present in the estimation error covari-
ance matrix, and might lead to numerical noise. Recently,
a new framework to deal with this problem has been un-
der development. It essentially involves the decomposition
of the model domain into several sub-domains and the ap-
plication of Kalman’s correction independently in each sub-
domain, using an associated estimation covariance matrix
(Anderson, 2003). Additional simplifications were also in-
troduced to further reduce the computational burden using
coarser grids (Fukumori, 2002) or EOFs (Testut et al., 2003;
Ott et al., 2004), within the context of reduced-order and en-
semble techniques, respectively. With the same aim in view,

Hoteit et al.(2001) introduced the SEPLEK filter to improve
the local behavior of the SEEK filter and to reduce its com-
putational cost. The main idea behind this filter is to force
the correction directions of the SEEK filter to be local, by
having as a support a small region of the domain, using a
so-called “local EOF analysis”. To improve the representa-
tion of the long-range variability, the local functions were
complemented by global (classical) EOFs, leading to a set
of “global-local” correction directions. The global functions
can further be allowed to evolve with the model dynamics,
as in the SEEK filter. The local functions remain invariant
in order to retain their locality. This drastically reduces the
computational burden with respect to the SEEK filter, since
the number of global functions in practice can be small. It is
important to note that, although the idea of the SEPLEK filter
is similar to the filters cited above, its principle is different.
The correction step of the Kalman filter actually remains un-
changed in the SEPLEK filter and it is always applied glob-
ally, while making use of global and local correction func-
tions.

3.1 The global-local correction directions

To improve the representation of short-range correlations,
a so-called “local EOF analysis” was introduced byHoteit
et al. (2001). The basic idea is to construct a set of EOFs,
each having as a support a small region of the model domain.
This is done by applying separate EOF analysis on a set of
model sub-domains. To obtain adequate representation, these
sub-domains should overlap. One efficient way to do this
is to consider a partition of unity of the model domain, i.e.
a set of positive functions{χ (j), j=1, . . ., J } defined over
the model domain whose sum is identically equal to 1. The
model state vectorX can then be decomposed into local
fields X(j), such asX=

∑J
j=1 X(j) with X(j)

=Xχ (j). An
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independent (classical) EOF analysis is then performed on
each set of local fieldsX(j) to determine a representational
subspace for each sub-domain. The “global” representational
error of the original state vectorX can still be reduced by
considering its projection onto the subspace spanned by the
set of (local) EOFs of all the sub-domains.

Since the use of local functions only, may degrade the rep-
resentation of the long-range variability,Hoteit et al.(2001),
proposed to augment the local EOFs with some global func-
tions. This would provide a set of functions suitable for the
representation of the global, as well as the local model vari-
ability. Such a set of “global-local” functions is obtained by
performing a local EOF analysis on the residuals of the vec-
torsX1, . . ., XN in the first global EOFs. This is supported
by the fact that these residuals are generally due to the bad
representation of the local variability in the subspace spanned
by the global EOFs. Recently, a similar idea was tested by
Waseda et al.(2003), but using wavelets to represent the local
fine-scale information.

3.2 Filter’s initialization

The global-local analysis does not readily provide a low-rank
approximation of the error covariance matrix needed for the
initialization of the filter. Therefore, we resort to an objective
analysis to correct the initial state estimateX̄ using the initial
observationsY0. In most applications,̄X is assumed to be the
average of a set of state vectors (provided by a historical run).

Starting from a set of global-local EOFsLB
0 =[L0

...B], with rg
global EOFs (L0) andrl local EOFs (B), we take as initial
analysis state (Hoteit et al., 2001)

Xa(t0) = X̄ + LB
0 U0(L

B
0 )T HT

0 R−1
0 (Y o

0 − H0X̄), (1)

whereU0=[(LB
0 )T HT

0 R−1
0 H0L

B
0 ]

−1, R0 is the initial obser-
vational error covariance matrix, andH0 is the gradient of
H0 evaluated atX̄. This provides an initial analysis error
covariance matrix of rank(rg+rl),

P a(t0) = LB
0 U0(L

B
0 )T . (2)

3.3 Filter’s algorithm

As the Kalman filter, the SEPLEK filter provides an estimate
of the system state as a succession of forecast and correction
steps. Consider a physical system

Xt (tk) = M(tk−1, tk)X
t (tk−1) + ηk, (3)

whereXt (t) is the true state vector at timet , M(s, t) is an
operator describing the system transition from times to time
t , andηk represents the model error. The forecastXf (tk) is
obtained by integrating the model forward in time, starting
from the most recent analyzed stateXa(tk−1). When a new
observationY o

k is made, it is assumed to be a function ofXt

and a measurement of uncertainty

Y o
k = HkX

t (tk) + εk, (4)

whereHk is the observational operator andεk represents the
error in the observations.ηk andεk are assumed to be in-
dependent and normally distributed with zero mean and co-
variance matrixQk andRk, respectively. Assuming that a
set of global-local correction directionsLB

k is available, the
SEPLEK filter provides the analysis state, while using the
observations sequentially to correct the forecast along the di-
rections ofLB

k only, hence it will be called the “correction
basis” of the filter, exactly as in the SEEK filter (Pham et al.,
1998),

Xa(tk) = Xf (tk) + LB
k Uk(L

B
k )T HT

k R−1
k [Y o

k − HkX
f (tk)], (5)

whereHk is the gradient ofHk evaluated atXf (tk) andUk is
updated with

U−1
k =

[
Uk−1 + P T

LB
k

QkPLB
k

]−1
+ (LB

k )T HT
k R−1

k HkL
B
k . (6)

In the above equation,PLB
k
=[(LB

k )T LB
k ]

−1(LB
k ) is the pro-

jection operator onto the subspace generated byLB
k . The

corresponding analysis error covariance matrix is then given
by

P a(tk) = LB
k Uk(L

B
k )T . (7)

To attenuate the bad impact of different approximations
and uncertainties on the performance of the filter, a forgetting
factorρ is used here. This factor enhances the filter stability
by amplifying the already existing modes of the background
error. It simply amounts to replacing Eq. (6) by

U−1
k =

[
1/ρUk−1 + P T

LB
k

QkPLB
k

]−1
+ (LB

k )T HT
k R−1

k HkL
B
k . (8)

3.4 Evolution of the correction directions

The evolution of the correction directions is generally bene-
ficial since it allows the filter to keep track of changes in the
model dynamics (Hoteit et al., 2002). When a set of global-
local functions is used as a correction basis for the filter, only
the global functions can be allowed to evolve with the model
dynamics, as in the SEEK filter, since the local EOFs would
lose their local character. Although this significantly reduces
the computational burden of the method, the “non-evolutive”
nature of the local functions is clearly a disadvantage within
the framework of the SEEK filter. This approximation, how-
ever, is not expected to place a major limitation on the fil-
ter’s performance, since the evolution equation of the SEEK
filter is designed to follow only slow changes (Pham et al.,
1998). This helps to support the idea of keeping the local
functions invariant, since their evolution might be sometimes
problematic as they represent quickly evolving local varia-
tions by design. This means that we aim at not correcting all
fine-scale variation errors, but only a large number of them,
on average. If the correction basis is already decomposed as

LB
k−1=[ Lk−1

... B] at timetk−1, we therefore take

LB
k = [ Lk

... B ], (9)
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Table 1. Twin experiments setup.

Assimilation Scheme SFEK, SFPLEK, SEPLEK

State vector Ecosystem state variables

Dimension of state vector 1 768 536

EOF analysis ≈3 years (360 vectors)

Assimilation Period 5 March-5 June (3 months)

Observed Variables Sea color or Profiles of
Nitrate, Phosphate, Silicate,
Ammonia

Number of Observations Sea color: 693
Profiles: 23 stations×30 layers
=690

Assimilation time step 4 days

Observation Error Sea color: 10%
Profiles: 5%
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Fig. 3. Percentage of variance explained by the EOFs versus the
number of retained EOFs.

where the new global correction directionsLk evolve with
the tangent linear modelM (evaluated atXf ), as in the SEEK
filter,

Lk = M(tk−1, tk)Lk−1. (10)

The forecast error covariance matrix can be then approxi-
mated by

P f (tk) = LB
k Uk−1(L

B
k )T + Qk. (11)

The structure of the forecast and analysis error covariance
matrices of this filter is, therefore, very similar to that of the
SEEK filter. Basically, these matrices are taken to be singular
of low rank (or at least approximated to be so).

4 Experimental setup

The setup of the assimilation experiments is presented in this
section. A general overview is given in Table1.

4.1 The state vector

The variables of the physical sub-model, which are only used
as forcing fields to the ecology, were considered perfect, and
were therefore not included in the estimation process. This
eliminates the influence of the forcing on the assimilation
system performance, allowing to better understand the filter’s
behavior with the ecological variables. The filter’s state vec-
tor contains, therefore, the 88 state variables of the ecological
model only. In more realistic applications, the assumption
of perfect physics can be overoptimistic and the joint esti-
mation of physical/biological variables may be necessary for
a complete control of the coupled physical-ecological sys-
tem. It should be noted that some biogeochemical variables
may become negative after the filter’s correction. Following
Natvik and Evensen(2003), these variables were simply set
to a small threshold value close to zero, allowing species to
become active again.

As mentioned above, the numerical grid of the Cretan Sea
has 56 boxes in the zonal direction and 20 boxes in the merid-
ional direction with 30 vertical layers. The corresponding
water points for this grid are 20097, which multiplied by the
88 state variables of the ecological model, define the dimen-
sion of the state vector to be equal to 1 768 536.

4.2 Choice of the filter’s correction directions

Global and local functions were determined using the classi-
cal and local EOF analysis as described in Sect.3.1. Follow-
ing Pham et al.(1998), the EOF analysis was carried out on
a set of state vectors simulated by the model itself. There-
fore, the model was first integrated for 20 years with the aim
of reaching a statistically steady state. Another integration
of two more years was next carried out to generate a histor-
ical sequence of model realizations. A sequenceHS of 360
state vectors was retained by storing one state vector every
two days. As the ecological state variables are of a differ-
ent nature, each variable was normalized by the inverse of
its spatially-averaged (over all the grid points) standard devi-
ation. Figure3 plots the cumulative percentage of variance
explained by the EOFs as a function of the number of EOFs.
As expected, the first EOFs capture most of the variability
of the system, while the last EOFs are reduced to noise. For
instance, the first 20 EOFs explain 90% of the observed vari-
ability in the sampleHS .

Different sets of local EOFs were determined by decom-
posing the model domain into horizontal and vertical sub-
domains, according to the spatial variability of the Cretan
Sea ecosystem. The local analysis was performed on the
residuals of the states in the first 3, 6 and 9 global EOFs,
which explain 63%, 72% and 80% of the total variance of
the sampleHS , respectively. In the horizontal direction, the
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Fig. 4. Model domain decomposition into 3 and 4 horizontal sub-domains and 3 vertical sub-domains.

model domain was decomposed into three and four overlap-
ping sub-domains, using the partitions of unity functions as
shown in Fig.4. In both cases, the width of the overlapping
areas was set to 1/6◦. The first decomposition was used when
profile data are assimilated to isolate the observed area, as il-
lustrated in Fig.2, limiting in this way the range of the filter’s
corrections to this area only. The second decomposition was
applied to isolate the different observed spatial variabilities
in the model. Separate EOF analysis were then applied on
the projections of the state vectors of the sampleHS on each
of these sub-domains. Another decomposition in the vertical
direction was also carried out, according to the natural ver-
tical variability that the ecosystem could exhibit: euphotic
zone, deep-ocean, and the area in between. The depth of
the euphotic sub-domain was set to the first 200 m, with an
overlapping zone of 50 meters between the two sub-domains.
The deep ocean was also decomposed into two sub-domains
(Fig. 4). Obviously, the local EOFs of the deep ocean zones
do not produce any corrections when surface ocean color data
are assimilated. The use of global functions may, therefore,
be crucial in this case for an efficient propagation of surface
information to the deep ocean.

4.3 Data and filter validation - twin experiments

A twin experiments approach was adopted for this study, in
which the “truth” is assumed to be provided by the model
itself. Therefore, a set of 45 reference (true) states (Xt ) is
first retained from a reference model free-run, sampled ev-
ery two days from March to June. This period is marked
by the increased primary production of the system, and it
has been chosen in order to test the effectiveness of the fil-
ters during strongly variable periods. Pseudo-observations
for the assimilation experiments are then extracted from the
Xt . These states are also later used to evaluate the filter’s
performance by comparing them with the fields produced by
the assimilation system. The multivariate properties of the
filters can, therefore, be assessed by examining the impact of
the assimilation system on non-observed variables. Pseudo-
observations of ocean color data were sampled from the ref-
erence statesXt over the entire surface domain. Pseudo-
profiles data of nitrate, phosphate, silicate and ammonia were
sampled following a realistic network of 23 stations in the
Cretan Sea (Fig.2). Random Gaussian noises with zero mean
and standard deviation of 5% for the profiles and 10% for the



3178 I. Hoteit et al.: Efficient data assimilation into a complex, 3-D physical-biogeochemical model

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4
Mesozooplankton

R
R

M
S

Freerun
10 EOFs
20 EOFs
30 EOFs
40 EOFs

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Bacteria

R
R

M
S

Freerun
10 EOFs
20 EOFs
30 EOFs
40 EOFs

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Phosphate

R
R

M
S

Freerun
10 EOFs
20 EOFs
30 EOFs
40 EOFs

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Nitrate

R
R

M
S

Freerun
10 EOFs
20 EOFs
30 EOFs
40 EOFs

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2
Diatoms

R
R

M
S

Freerun
10 EOFs
20 EOFs
30 EOFs
40 EOFs

0 20 40 60 80 100
0.4

0.6

0.8

1

1.2

1.4
Picoplankton

R
R

M
S

Freerun
10 EOFs
20 EOFs
30 EOFs
40 EOFs

Fig. 5. Evolution in time of phosphate, nitrate, diatoms, picoplank-
ton, mesozooplankton and bacteria RRMS from the model free-run
and the SFEK filter assimilating profiles with 10, 20, 30 and 40
EOFs.

ocean color were also added to the pseudo-observations in
order to construct a more realistic framework. In all the as-
similation experiments, the initial state of the filter is chosen
to be the mean state of the sampleHS .

The performance of the filters is assessed through the rel-
ative root mean square (RRMS) error over the whole model
domain for each state variable. The RRMS is defined as

RRMS(tk) =
‖Xt (tk) − Xa(tk)‖

‖Xt (tk) − X̄‖
, (12)

whereXa is the analysis state obtained by the filter,X̄ is the
mean state of the sampleHS and‖·‖ denotes the Euclidean
norm. The error is therefore relative to the free-run error,
since the denominator represents the error when no observa-
tions are assimilated and the analysis vector is taken as the
mean state of the historical free-run.

5 Assimilation results

Several experiments were carried out to evaluate the repre-
sentativeness of the different set of global-local EOFs and to
assess the relevance of the assimilation system. The choice of
the domain decomposition to make best use of the available

observations was carefully assessed. As stated before, all
sensitivity experiments were performed using the SFPLEK
filter since it provides an efficient low-cost way to evaluate
the representativeness of the different global-local EOFs. Al-
though the assimilation results will not be identical as if the
SEPLEK filter was used, we expect the sensitivities of both
filters to the different correction directions to be very similar.
The experimental results are focused on those variables con-
sidered as important in revealing the dynamics of the ecosys-
tem (nutrients, phytoplankton and bacteria), and are those
parameters most often measured in sampling programs.

The forgetting factorρ is used to artificially stimulate the
filter’s forecast covariance matrix as a simple way to com-
pensate for the different approximations used in the filter, as
the use of low-rank covariance matrices and the linearization
of the system equations. Its value is therefore a priori un-
known, since it completely depends on the characteristics of
the assimilation scheme and the system under study. Here
we resort to experimentation to find an appropriate value for
ρ. Several assimilation runs (not shown here) were therefore
first performed with the SFPLEK filter, to study the behavior
of the assimilation system with different values ofρ vary-
ing between 0.5 and 1. The best results were obtained using
ρ=0.9, which was therefore used in all the experiments pre-
sented below.

5.1 Assimilation of profiles of data

The assimilation results of data profiles are first presented.
The assimilation results of sea color data are discussed in the
next section.

5.1.1 Sensitivity to the number of global EOFs

The first experiment was performed with the SFEK filter us-
ing global (classical) EOFs only. The goal was to show that
the performance of the filter stagnates (even degrades in cer-
tain situations), when the number of global EOFs increases.
The SFEK filter was therefore implemented with 10, 20, 30
and 40 EOFs. The performance of the filter was also com-
pared to the model free-run (without assimilation) to assess
the relevance of the assimilation system. The RRMS of these
runs are illustrated in Fig.5. The assimilation system en-
hances the model behavior in all cases. For most of the vari-
ables, the filter performs best with 20 EOFs. This suggests
that the last global EOFs do not represent any specific mode
of the system and are very often reduced to noise. Only bac-
teria seems to require more than 20 EOFs, but this is proba-
bly due to the short-range variations of this variable. Overall,
the SFEK filter with global EOFs fails to stabilize the RRMS
completely, particularly for diatoms and mesozooplankton.
Assimilation results for diatoms needs to be improved and
can be explained by the significant spatial and temporal vari-
ations during the winter mixing. As nutrients are transported
in the euphotic zone, the conditions become particularly fa-
vorable for big cells as diatoms, significantly increasing their
contribution to the overall primary production. This local
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behavior is generally difficult to capture by the global (clas-
sical) EOFs. Although mesozooplankton grows at a slower
rate compared to diatoms, the latter phytoplanktonic group
accounts for a significant proportion of the mesozooplank-
ton’s diet, thus explaining a part of the variability.

5.1.2 Sensitivity to the choice of the correction directions

The performance of the SFEK/SFPLEK filter strongly de-
pends on the representativeness of its invariant correction ba-
sis (Hoteit et al., 2002), therefore, providing a very efficient
way to measure the relevance of the different set of global-
local EOFs. Figure6 compares the results of three exper-
iments using 20 correction directions as follows: (i) global
(classical) EOFs, 6 global and 14 local of EOFs (in each sub-
domain) from (ii) the horizontal and (iii) the vertical decom-
position into three sub-domains, as described in Sect.4.2.
With the exception of phosphate and nitrate, one can see that
the use of local EOFs clearly enhances the filter’s behavior.
This is consistent with the results ofHoteit et al.(2001) who
found that the use of local EOFs only, may badly affect the
estimation of the model variables governed by long-range
circulations, such as phosphate and nitrate. The overall im-
provements to the fine-scale variability are still however not
quite significant. We speculate that the limited impact of this
choice of domain decomposition on the filter’s performance
is probably due to a weak spatial variability in the small do-
main of the model, allowing good representation of the hor-
izontal correlations by the classical EOFs. Concerning the
vertical decomposition, the separation of the euphotic zone
from the deep ocean clearly improves the assimilation re-
sults. It greatly enhances the estimation of those variables
with strong variability in the euphotic zone. The use of ver-
tical EOFs seems to provide a remarkably efficient repre-
sentation of the different local variabilities in the ecosystem
model. For instance, the estimation of mesozooplankton fol-
lows diatoms with small error in the first 25 days of assim-
ilation. However as spring progresses and other functional
groups increase also, mesozooplankton decreases the propor-
tion of diatoms in its diet. This, in conjunction with the high
excretion rate of uptake, contributes to a strong variability
and explains part of the increase in the estimation error.

5.1.3 Sensitivity to the number of global EOFs in the
global-local functions

The aim of this experiment is to study the sensitivity of the
filter to the number of global EOFs in the global-local cor-
rection basis. Once this number is fixed, the number of local
EOFs to be retained in each sub-domain can then be chosen,
according to the percentage of variance explained by these
EOFs (as it is usually done in the classical EOFs). Two runs
were performed with the SFPLEK filter, using global-local
EOFs obtained from the vertical decomposition, always with
20 correction directions: (i) 6 global and 14 local, and (ii) 3
global and 17 local, respectively. The RRMS for these runs
are plotted in Fig.7. It can be seen that the use of more global
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Fig. 6. Evolution in time of phosphate, nitrate, diatoms, picoplank-
ton, mesozooplankton and bacteria RRMS from the SFEK/SFPLEK
filter assimilating profiles using global EOFs (SFEK filter), global-
local EOFs (SFPLEK filter), from 3 horizontal and 3 vertical sub-
domains (as shown in Fig4).

EOFs enhances the assimilation results for phosphate and ni-
trate. However, mesozooplankton seems to be better esti-
mated with less global EOFs. This might be expected since
nitrate and phosphate variables have a long-range variability
while mesozooplankton is mostly dominated by small-scale
variations. Changing the number of global EOFs has almost
no effect on picoplankton and bacteria. The number of global
EOFs should therefore be chosen very carefully while bal-
ancing between the estimation quality of the different vari-
ables of the model. Its choice depends only on the system
under study and the variables that need to be estimated with
more precision.

5.1.4 Sensitivity to the choice of the horizontal sub-
domains

The last sensitivity experiment was carried out to study the
performance of the assimilation system with respect to the
choice of the horizontal sub-domains. More precisely, the
SFPLEK filter was tested with two different sets of global-
local EOFs which have been computed from the two de-
compositions of the model domain into 3 and 4 horizon-
tal sub-domains, as described in Sect.4.2. One can see
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Fig. 7. Evolution in time of phosphate, nitrate, diatoms, picoplank-
ton, mesozooplankton and bacteria RRMS from the SFPLEK filter
assimilating profiles using global-local EOFs from 3 vertical sub-
domains with 3 global− 17 local EOFs, 6 global−14 local EOFs,
and from the SEPLEK filter with 6 global - 14 local EOFs.

from the results of these runs plotted in Fig.8 that the fil-
ter’s performance highly depends on the choice of the sub-
domains. Moreover, increasing the number of sub-domains
does not necessarily improve the assimilation results. Sur-
prisingly, only the estimation of the picoplankton was better
when more sub-domains were used. In general, limiting the
length of the corrections in the horizontal direction seems to
enhance the filter performance by filtering noises caused by
poorly known correlations in the covariance matrix. How-
ever, the choice of the decomposition must also take into ac-
count the different local variabilities of the model, as well as
the type of assimilated observations.

5.1.5 Evolution of the global correction directions - SE-
PLEK filter

The evolution of the correction directions is important for
keeping track of changes in the model dynamics. As stated
in Sect.3.4, when a set of global-local functions is used, only
the global functions can be allowed to evolve in time to fol-
low changes in the model dynamics. In this experiment, a set
of 6 global and 9 vertical local EOFs (in each sub-domain)
were used in the SFPLEK and the SEPLEK filters. The only
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Fig. 8. Evolution in time of phosphate, nitrate, diatoms, picoplank-
ton, mesozooplankton and bacteria RRMS from the SFPLEK filter
assimilating profiles using global-local EOFs from 3 and 4 horizon-
tal and 4 sub-domains (as shown in Fig4).

difference between the two runs was that the global direc-
tions evolve in time in the SEPLEK filter, while they remain
unchanged in the SFPLEK filter. The computational cost of
the former was therefore six times higher than the latter. This
is affordable with the current computers, and is noticeably
faster than the SEEK filter, which usually requires the evolu-
tion of more than 30 functions for the studied ecosystem.

The higher cost of the SEPLEK filter can be supported by
Fig. 7, which plots the RRMS for the two runs. Indeed, one
can clearly see that the evolution of the global directions en-
hances the assimilation results for all the model variables.
It also improves the stability of the filter due to the contin-
uous tracking of the changes in the model dynamics. Only
the RRMS for the mesozooplankton was not significantly im-
proved. This points to difficulties in the SEEK update equa-
tion of the correction directions to follow rapid changes in
the model.

Integrated chlorophyll concentrations (0 m–120 m) of the
assimilated, the reference, and the free-runs, for the May,
are plotted in Fig.9. The filter follows closely the pseudo-
observations reproducing the spatial distribution, as well as
the range of values. An interesting feature is the local low
concentration area at the center - top part of the domain, at-
tributed to the existence of an intense anticyclone (Petihakis
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Fig. 9. Integrated chlorophyll concentrations (mg/m3) between
0 m–120 m from the free run, the reference run, as estimated by
the SEPLEK filter.

et al., 2002; Triantafyllou et al., 2003b), transferring nutri-
ents in the deeper layers. The action of another anticyclone
is also observed at the east part of the simulation field, as is
also evident by the low concentration values. Between these
two gyres the intrusion of nutrients in the euphotic zone is
depicted by maximum concentrations of chlorophyll. The
areas with low chlorophyll concentrations, caused by the gy-
ral system of the two anticyclones, is also nicely simulated
by the free run. The later, however, fails to reproduce the in-
creased chlorophyll concentrations close to the coast and be-
tween the two anticyclones. For the same period integrated
bacterial biomass also exhibits a very good coincidence be-
tween the two runs (Fig.10). The importance of the physical
features in the ecosystem functioning is evident, with bac-
terial biomass following the distribution of chlorophyll, al-
though maximum values are developed closer to the coast.
This is because the spring bloom which started in the coastal
areas in late winter, provides the important food substrate for
bacterial growth. Additionally, a cross section of chlorophyll
concentrations of the three runs (with assimilation, reference,
free) along the east–west direction, at latitude 35.75◦ N, is
illustrated in Fig.11. The simulations are very similar, pro-

Fig. 10. Integrated bacterial biomass between 0 m–120 m from the
free run, the reference run, as estimated by the SEPLEK filter.

ducing a characteristic feature of the Cretan Sea ecosystem,
a Deep Chlorophyll Maximum (DCM), which as the ther-
mocline formation progresses (August), reaches as deep as
90–100 m. The presence of the anticyclone at the center of
the domain is nicely depicted by the low chlorophyll concen-
trations.

5.2 Assimilation of ocean color data

Assimilation experiments of ocean color data are presented
in this section. The aim of these runs is to show that the
choice of the domain’s decomposition should take into ac-
count the characteristics of the observations to be assimilated
into the model. Several sensitivity experiments using the SF-
PLEK filter were performed, as in the later section. Here
only the assimilation results of two assimilation experiments
are discussed. The first experiment deals with the sensitivity
to the choice of the domain decomposition, while the sec-
ond assesses the impact of the number of global EOFs in the
vertical global-local functions on the filter’s behavior.

For the first experiment, three runs were carried out as in
Sect.5.1.1: (i) 20 global (classical) EOFS, (ii) 6 global and
14 local EOFs for the horizontal decomposition into 4 sub-
domains (which provided better results in our experiments
than the horizontal decomposition into 3 sub-domains), and
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Fig. 11. Vertical cross sections of chlorophyll concentrations
(mg/m3) at latitude 35.75◦ E from the free run, the reference run,
as estimated by the SEPLEK filter.

(iii) 9 global and 11 local EOFs from the decomposition into
vertical sub-domains. The RRMS for these runs are pre-
sented in Fig.12. At first glance, the assimilation of sea color
data significantly improves the estimation of picoplankton,
mesozooplankton and bacteria compared to the experiment
of assimilating data profiles. Phosphate and nitrate are well
estimated by the filter, noting that these data have very little
effect on diatoms. Although in the beginning of the exper-
imental period diatoms are dependent on the availability of
phosphate and nitrate (small error), soon after they are lim-
ited by silicate, while a significant pressure is also exerted
by predators. Additionally, the assimilation of sea color data
affects chlorophyll concentrations only at the top layer of the
euphotic zone and thus it provides relatively less information
about diatoms, which are mostly concentrated at deep layers
because of their heavy weight. The use of global-local cor-
rection directions generally enhances the filter’s behavior for
all variables, although the improvements are not significant.
In contrast to the assimilation of data profiles, the horizontal
decomposition seems to provide better results, while the im-
pact of the vertical decomposition is less pronounced. In par-
ticular, phosphate and nitrate are better assimilated when hor-
izontal local EOFs are used, probably because of the global
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Fig. 12.Evolution in time of phosphate, nitrate, diatoms, picoplank-
ton, mesozooplankton and bacteria RRMS from the SFPLEK filter
assimilating sea color data using global EOFs, global-local EOFs
from 4 horizontal and 3 vertical sub-domains (as shown in Fig4).

coverage of color data to all sub-domains. Limiting the prop-
agation of the surface data by using vertical local EOF, de-
grades the filter’s performance for these two variables and as
one can expect, the classical global EOFs still provide the
best estimations.

In an attempt to explain why the vertical decomposition is
not as efficient as in the assimilation of profiles data, three
assimilation runs were performed using vertical global-local
correction functions with: (i) 3 global and 17 local, (ii) 6
global and 14 local, and (iii) 9 global and 11 local. Figure13
depicts the RRMS under the euphotic zone for the three runs.
As can be seen, the use of more global EOFs, up to a certain
number, improves the filter’s performance in the deep ocean.
This suggests that an appreciable number of global EOFs are
still needed to propagate the surface data into the deep layers.
This was not always true (not presented here) for all model
variables in the euphotic zone, and the use of local EOFs gen-
erally improves the assimilation results. These results are not
in full agreement with those ofCarmillet et al.(2001), who
found that the use of only local EOFs in the euphotic zone
improves the filter’s behavior. We speculate that this is prob-
ably due to a weak representation of the surface/subsurface
correlations in their (global) EOFs. The results of this exper-
iment, however, confirm theCarmillet et al.(2001) finding,
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namely that the existence of “bad correlations” in the correc-
tion directions has a more severe impact on the vertical than
on the horizontal direction.

In another experiment similar to the one performed in
Sect.5.1.5, but assimilating ocean color data, the SEPLEK
filter was used to assess the relevance of the evolution of
the global correction directions. The results of this run were
consistent with Sect.5.1.5and lead to identical conclusions.
Therefore, we decided not to show them in order to save
space.

6 Summary and discussion

While data assimilation techniques have made great progress
in meteorology and physical oceanography, their application
to complex ecosystem models often encounters many diffi-
culties, mainly because of the huge number of ecological
variables and of their complex variabilities. In this paper,
sophisticated Kalman filters, called SFPLEK and SEPLEK,
were used to assimilate profiles and sea color data into a 3-
D coupled biophysical model of the Cretan Sea ecosystem.
These filters make use of a combination of global (classical)
and so-called local EOFs to supplement the large-scale vari-
ability continued by the classical EOFs with local fine-scale
information. The local EOFs are determined according to the
different variability of the ecosystem model, as well as to the
characteristics of the assimilated observation. Moreover, the
global EOFs can be allowed to evolve with the model dy-
namics, and this was found to be beneficial for the stability
of the filter during periods of strong ecological variability.

From the various twin experiments performed, the perfor-
mances of the SFPLEK and SEPLEK filters were satisfactory
for assimilating sea color data and profiles of nitrate, phos-
phate, silicate and ammonia from 23 stations in the Cretan
Sea, without requiring large computational resources. The
assimilation results also suggest that the use of local func-
tions, obtained from a horizontal or a vertical domain decom-
position, clearly improves the representativeness of the fil-
ter’s correction basis. Sensitivity experiments also revealed
that an efficient choice of horizontal decomposition should
take into account both the different local variabilities of the
system and the distribution of the data. A horizontal decom-
position was found, however, to have less of an impact than
a vertical decomposition, probably because of the small area
of the computational field which make the classical EOFs
less noisy in the horizontal direction. The assimilation ex-
periments also confirm previous results by stating that the
ecosystem models are more sensitive to bad correlations in
the vertical than in the horizontal direction. The use of lo-
cal vertical EOFs was found to be beneficial for enhancing
the stability of the filter, as long as they are complemented
with a number of global EOFs for an efficient representation
of the model large-scale variability. This was more evident
when sea color data were assimilated to help propagating sur-
face information into the deep layers. More experiments with
different vertical decompositions still need to be carried out
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Fig. 13.Evolution in time of phosphate, nitrate, diatoms, picoplank-
ton, mesozooplankton and bacteria RRMS in the deep ocean from
the SFPLEK filter assimilating sea color data using global-local
EOFs from the vertical decomposition with: (i) 6 global - 14 lo-
cal EOFs, and (ii) 9 global - 11 local EOFs.

to tune the parameters of the vertical sub-domains. At this
stage, however, we thought that it is more important to better
understand the impact of different horizontal sub-domains,
since the sensitivity of the filter to the latter is more unpre-
dictable. Recently, the availability of ocean color data pro-
vided a unique opportunity for the problem of data assimila-
tion in ecosystem models due to their global coverage. How-
ever, these data contain only information about the surface
layers of the ocean, and therefore still need to be comple-
mented with in-situ data of the lower layers, as suggested by
the results of our experiments.

Twin experiments have demonstrated the ability of the SF-
PLEK and SEPLEK filters to efficiently control the evolu-
tion of the ecosystem state, while assimilating profiles and
sea color data into a small area of the Cretan Sea during
a period of strong ecosystem variability. As a next step,
real profiles and ocean color data will be assimilated, which
often proves to be much more complex and less forgiving
than a twin experiments approach. This would point to
the need for incorporating a more sophisticated model er-
ror, since ecosystem models are only a crude approxima-
tion of the real system under study. We also plan to test
the filters using local functions obtained from simultaneous
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horizontal-vertical decompositions. The preliminary twin
experiment applications reported in this paper were, how-
ever necessary, providing important knowledge and experi-
ence, and enabling the assessment of the impact of the fil-
ter on non-observed variables. An extension of the model
configuration to cover the Eastern Mediterranean is a future
task in the framework of the project Mediterranean Forecast-
ing System Toward Environmental Predictions (MFSTEP)
(http://www.bo.ingv.it/mfstep/), which might reveal a greater
impact of a horizontal decomposition of the simulation do-
main.
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