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Abstract. In the mid-latitude ionospheric region, sporadic-E

layers (Es layers) have often been observed, revealing multi-
ple layers. TheEs layers observed during the SEEK-2 rocket
campaign showed double electron density peaks; namely,
there are stable lower peaks and relatively unstable upper
peaks. We examined the effects of wind shear and the elec-
tric fields on the generation of the multiple layer structure,
in comparison with the electron density profile, the neutral
wind, and the DC electric field observed by the S310 rocket
experiments. The results showed that the neutral wind shear
is mainly responsible for the generation of the lower layer,
while the DC electric field makes a significant contribution
to the formation of the upper layer. The difference between
the lower and upper layers was also explained by the en-
hanced AC electric field observed at about 103–105 km al-
titude. The external DC electric field intensity is expected to
be∼5 mV/m, which is enough to contribute to generate the
Es layers in the ionosphere.

Keywords. Ionosphere (Electric fields; Ionospheric irregu-
larities, Mid-latitude ionosphere)

1 Introduction

Since the first identification in the 1930’s, the mid-latitude
Es layer has a long history of research which extends over
60 years. Many observations have been carried out by using
ionosondes and radars (e.g. Smith and Wright, 1972; Ogawa
et al., 2002; Maruyama et al., 2003; Haldoupis et al., 2003),
and rocket experiments (e.g. Dorling et al., 1969; Yamamoto
et al., 1998; Roddy et al., 2004). The generation mechanism
of the mid-latitudeEs layer has been understood using the
wind shear theory (e.g. Whitehead, 1961; Axford, 1963) and
many observation results have supported this interpretation
(e.g. Fujitaka and Tohmatsu, 1973; Kato et al., 1972; Ya-
mamoto et al., 1998); namely, there is good correspondence
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between the observedEs layer altitude (the altitude of elec-
tron density peak) and the predicted altitude (wind shear al-
titude) derived from the neutral wind profile. Moreover, the
ionospheric electric field has also been found to contribute to
the dynamics of the mid-latitudeEs layer, while the classi-
cal wind shear theory ignored any external ionospheric elec-
tric field. For example, Rees et al. (1976) reported that the
electric field effect helped to stabilize theEs layer structure
which was formed by the wind shear mechanism. Based on
Incoherent Scatter Radar (ISR) observations over Arecibo,
Mathews et al. (2001) suggested that the plasma instability
in theEs layer could be triggered by the electric fields pen-
etrating from theF -region. The layer formation under the
effects of wind shear and the electric field was investigated
with the 3-D simulation by Machuga and Mathews (2001).
It was suggested that the horizontal electric field was able to
modify the altitude and formation of theEs layer.

Huuskonen et al. (1988) pointed out the similarities and
differences ofEs layers observed in the mid-latitude and po-
lar regions in terms of appearance and ion composition. They
showed that different generation mechanisms of theEs layer
are necessary because the magnetic dip angle in the auroral
region is larger than at mid-latitudes. The wind shear mech-
anism doesn’t work well at high latitudes because the hor-
izontal component of the magnetic field is too weak to ac-
cumulate the ions viaV ×B drift (Kirkwood and von Zahn,
1991). In the polar region, electric field effects are impor-
tant to the formation of theEs layer, as demonstrated by Ny-
gren et al. (1984). Kirkwood and von Zahn (1991) showed
computer simulations demonstrating the formation of theEs

layer by electric fields in the absence of neutral wind effects.
Based on EISCAT radar observations, Kirkwood (1997) re-
ported that the height distribution and local time dependence
of the Es layers are controlled by the combined effects of
tidal wind and the electric field.

However, at mid-latitudes, the seasonal dependence (the
maximum in summer) and steep horizontal gradient of den-
sity profiles of theEs layers are not yet understood. In
addition, neutral sodium (or Fe) layers are often observed
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accompanying theEs layer (Kirkwood and von Zahn, 1993).
Kirkwood and von Zahn (1993) pointed out that such a neu-
tral metal layer would be ionized by auroral particle pre-
cipitation, and it would be observed as a multipleEs layer
when it was accompanied by an ordinaryEs layer in the
polar region. On the other hand, in the mid-latitude re-
gion, the present theory is insufficient because the wind shear
mechanism does not explain such a dense and narrow layer
with the density peaks of 105cm−3 in the background ioniza-
tion of 103cm−3 (Yokoyama, private communication, 2005).
The numerical simulations by Yokoyama et al. (private com-
munication, 2005) showed that the synthesizedEs layer is
too stable to describe the behavior of the actualEs layer.
Thus, other physical processes, such as chemical reactions
or anomalous ionization are needed to understand the real
behavior of theEs layer.

ComplexEs structures have often been observed using
radar (Mathews et al., 1993) and rocket observations (Bowen
et al., 1964; Smith, 1966; Smith and Mechtly, 1972; Kato
et al., 1972). During the SEEK rocket campaign, such
structures were also observed (Yamamoto et al., 1998).
The double peakedEs structure measured by Smith and
Miller (1980) was explained by the unstable wind shear;
however, their interpretation has not been verified by simulta-
neous and direct observations of electron density and neutral
wind. The ISR observations over the Arecibo observatory
also revealed complexEs structures; for example, Mathews
et al. (2001) observed theEs modulation accompanied byF -
region disturbance. They argued that such anEs structure is
due to the ionospheric electric field which originates fromF -
region disturbances. In addition, different ion compositions
were observed based on the ISR observations of theEs layers
(Huuskonen et al., 1988). However, it is noted that all theEs

layers having the multiple structure are not always composed
of different ion species.

In recent years, computer simulation results have sug-
gested that plasma instabilities could deform theEs layer
into a complex structure. Bernhardt (2002) proposed that the
Kelvin-Helmholtz Instability (KHI) could generate the dou-
ble Es layer centered on the wind shear altitude. Cosgrove
and Tsunoda (2003) also suggested that another type of non-
linear instability could generate a complex layer structure.
They concluded that the instability could lift up part of the
Es layer to overlap with the original layer. Therefore, an ex-
ternal electromagnetic force becomes an important candidate
for the formation and dynamics of theEs layer.

Based on the above background, the SEEK-2 rocket cam-
paign was carried out on 3 August 2002, in order to observe
theEs layer related to the QPEs (Yamamoto et al., 2005). As
a result of the SEEK-2 experiment,Es double layer struc-
tures were observed with steep density gradients at altitude
locations of around 100 km, with altitude intervals of 1 km.
During the rocket experiments, the strong wind shear was
also observed at the same altitude as theEs layer peaks. The
purpose of this paper is to evaluate the wind shear theory for
explaining the complexEs layer observed during the SEEK-
2 campaign. The second purpose is to evaluate the electric

field effects. We investigate the generation mechanisms by
analyzing the difference between observed layers for ascend-
ing and descending phases of two rocket trajectories.

2 Es layer observation during the SEEK-2 campaign

SEEK-2 is the comprehensive observation campaign in the
mid-latitude ionosphere employing two sounding rockets
(S310-31, -32) and ground-based instruments (VHF radar,
ionosonde, etc.). The purpose of the campaign was to reveal
the generation mechanism of QPEs and its relationship to the
Es layer. It was carried out on 3 August 2002 at Kyushu Is-
land, Japan. As planned, two rockets were launched with
a time separation of 15 min. The successive launches made
it possible to obtain the structure and dynamics of theEs

layer associated with the QPE phenomena (this is one of the
main advances over the previous SEEK campaign (Fukao et
al., 1998)). In the present analysis, we examine the electron
density data (NEI instrument) (Wakabayashi et al., 2005),
the DC electric field (EFD instrument) (Pfaff et al., 2005),
the neutral wind velocity (TMA) (Larsen et al., 2005) and
the AC electric field (PWM instrument) (Wakabayashi et al.,
2005). Electron density was measured using the S310-31,
and S310-32 rockets. The electric field was measured on
board S310-31, while wind velocity and the AC electric field
was measured on board S310-32. The AC electric measure-
ment was planned to observe the plasma waves associated
with the TMA release.

Neutral wind and electron density data have an altitude
resolution of 1 km and about 400 m, respectively. Plasma
waves were measured within the frequency range below
10 kHz; however, in this paper we use the waveform data
obtained below 100 Hz.

3 Observations and analysis

3.1 Electron density measurement

Figure 1 shows the electron density profiles of theEs lay-
ers obtained by using both rockets during ascending and
descending phases (within the altitude range from 95 to
110 km). These profiles indicate that theEs layers appeared
at almost the same altitude range, revealing one or two sharp
peaks. These peaks are analyzed with respect to the density,
altitude and thickness, and compared with other observations
of the electric field, neutral wind, and plasma wave measure-
ments.

The plasma density data show, that the lower peaks (in-
dicated as 31–1, 31–1′, 32–1, and 32–1′ in Figs. 1a and b)
in the altitude range from 101.4 to 102.7 km were a stable
feature, with a small variation in the density value within a
factor of 1.9 among the four paths of the two rockets. How-
ever, the upper layers (indicated as 31-2, 31-2′, 32-2, and
32-2′ in Figs. 1a and b) in the range from 103.2 to 105.0 km
exhibit greater variability in their density, as well as the loca-
tion height among the four paths. The upper layer observed
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in the S310-31 descending phase (31-2′) had nearly the back-
ground density value. On the other hand, data of the S310-32
ascending phase (32-2) had the density peak giving the max-
imum value during the two rockets flights. And their peak
altitudes are in ranges of 1.3 and 1.8 km for the lower (31-1,
31-1′, 32-1, and 32-1′) and upper (31-2, 31-2′, 32-2, and 32-
2′) layers, respectively. So, the higher layers tend to appear
in a slightly broad altitude range. In addition, when consid-
ering their shapes, the thicknesses (vertical distance between
the upper and lower boundary of each layer) of the lower and
upper layers are ranging from 1.4 to 2.9 km and from 1.4 to
1.9 km, respectively. Therefore, the upper layers tend to ap-
pear as the relatively narrow and sharp peaks. In summary,
the lower layers are located at the similar altitudes with sta-
ble densities and wide thickness. On the other hand, the up-
per layer shows the variable nature in their location altitude,
shape and density.

3.2 Comparison with wind shear theory

The vertical profiles of the electron number density measure-
ments are compared with the results of neutral wind profiles
observed by the TMA release experiment. Because the TMA
release was carried out for ascending and descending phases
of the S310-32 experiment (Larsen et al., 2005), we try to
compare the measured electron number density and the wind
profiles with the altitude intervals of 1 km. Based on the wind
data, the vertical ion drift velocity, due to the wind shear, is
derived by adopting the method of MacLeod (1966). After
MacLeod (1966), the following equations are applied to the
observation results, namely, the equation of motion is modi-
fied by assuming the equilibrium state, as

ρ+ (u − vi) + vi × b = 0, (1)

where

ρ+ =
miνni

eiB
=

νni

ωi

, (2)

B = Bb, (3)

whereb is unit vector in the direction of the magnetic field,
andu andvi are the neutral wind velocity, and the velocity
of ion motion, respectively.

Equation (1) is derived from the equation of motion for a
single particle, neglecting the pressure and the effect of the
external electric field. Thez component of ion velocityV i

can be obtained,

V i =
1

1 + ρ2
+

[
ρ2

+u + ρ+u × b + (u · b)b
]
. (4)

For the present analysis, the geomagnetic dip and the dec-
lination are given by the IGRF geomagnetic field model.
The collision frequency between ions and neutral particles
is given by the relation of

νin ≈ 5 × 10−10Nn [Hz] , (5)

whereNn indicates the neutral particle density (cm−3).
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Fig. 1. (a)Altitude profiles of electron number density obtained us-
ing the NEI instrument on board the S310-31 rocket (these panels
represent the altitude range from 95 to 110 km of Fig. 4a in Wak-
abayashi et al. (2005)). There are sharp peaks due toEs layers at the
altitude of about 102.7 and 104.6 km during the ascending phase
(peaks are numbered as 31-1 and 31-2). There is only one sharp
peak during the descending phase at the altitude of 102.6 km (this
peak is indicated as 31-1′). (b) Altitude profiles of electron num-
ber density obtained using the NEI instrument on board the S310-
32 rocket. Several dashed lines indicate the data blanks due to the
TMA release. There are three enhancements of density at altitudes
of 101.4, 103.2 and 109.6 km during the ascent (they are numbered
as 32-1, 32-2 and 32-3, respectively). The peaks during the descent
are also numbered as well as during the ascent.

The ion cyclotron frequency was approximated as

ωi ≈ 1 × 102 [Hz] . (6)

In Figs. 2a and b, theVz profiles and electron density pro-
files are compared directly. It is shown that there are three
possible altitude ranges where ions are accumulated as a
layer during the ascending period (gray shadings in Fig. 2a),
namely, they are located from 100 km to 103 km (particularly
at 102–103 km), from 106 km to 108 km (particularly at 106–
107 km), and from 109 km to 110 km. In comparison with
the electron density measurement on board S310-32, we can
confirm corresponding peaks at altitudes of 101.4 km (32-1)
and 109.6 km (32-3). However, 32-2 did not correspond to a
strong ion accumulation rate.

On the other hand, in the descending phase of S310-32,
the Vz profile also suggests that there are three altitude re-
gions where the ion accumulation occurs, namely they are lo-
cated from 96 km to 98 km, from 100 km to 103 km, and from
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Fig. 2. The comparison between vertical ion drift velocities derived
from neutral wind profiles and electron density profiles. The gray
shadings represent the ion convergent regions due to the wind shear.
The 32-2 and 32-2′ peaks do not correspond to the ion accumulation
regions in(a) and(b), respectively.

106 km to 109 km. Within the electron density profile of the
descending phase, there were corresponding density peaks
32-1′ and 32-3′ at the altitudes of 102.1 km and 106.6 km, re-
spectively. The 32-2′ peak at 104.3 km did not correspondent
to an ion accumulation region due to the wind shear.

3.3 The effects of ionospheric electric field

To understand the detailed dynamics of theEs ionospheric
region, it is necessary to include the electric field effects.
The data obtained by using the Electric Field Detector (EFD)
(Pfaff et al., 2005) during the rocket flight makes it possible
to examine the electric field effect.

To examine theEs layer’s dynamics due to the electric
fields, Eq. (1) is rewritten as follows,

mi

ei

(E + V i × B) + νin (V n − V i) = 0. (7)

Then, thez component of the ion velocity is given as

Vz =
α (z)

β (z)
, (8)

where

α (z) =
eiEz

mi

+
eiBy

mi


(
Ex+

eiEyBz

miνin
+VnyBz

)
ei

νinmi
+Vnx

1+
e2
i B

2
z

m2
i ν

2
in

 , (9)

and

β (z) =
B2

ye2
i νin

m2
i ν

2
in + e2

i B
2
z

+ νin. (10)

Using Eq. (8), the vertical component of the ion drift velocity
is plotted in Figs. 3a and b, and compared with the measured
electron density profiles obtained by the S310-31 and S310-
32 rockets. To evaluate the effects of the electric fields and
the neutral winds, the electric field data are averaged in each
altitude range of 1 km. In Figs. 3a and b, three altitude re-
gions are shaded in each panel where there is the possibility
of ion convergence. In Fig. 3a (ascending phase), these re-
gions are located from 101 km to 103 km, from 104 km to
105 km, and from 106 km to 108 km. In Fig. 3a, the density
peaks in the altitude range between 101 km and 103 km (31-
1, 32-1) show a clear correspondence for both rocket flights.
Moreover, in the S310-31 data as well, a clear density peak
of 31-2 appears within the altitude region from 104 km to
105 km. On the other hand, within the altitude range from
106 km to 108 km, there is no correspondence in both pro-
files of the S310-31 and S310-32 ascending phases. The 31-3
peak appeared slightly higher (100 m) than the accumulation
region. There are also three convergent altitude regions in
Fig. 3b (descending phase). These regions are from 97 km to
98 km, from 99 km to 103 km, and from 106 km to 109 km.
Within the altitude range from 97 km to 98 km, there was not
a significant peak in the measured density profile. In the re-
gion from 99 km to 103 km, 31-1′ and 32-1′ peaks were in
agreement. In addition, the 31-3′ and 32-3′ peaks also corre-
sponded to the region from 106 km to 109 km (the peak of the
S310-31 is relatively small). However, the significant peak of
32-2′ in the descending phase is outside a convergent region,
namely it is 1.3 km higher than the ion convergent region.

This shows that the electric field possibly causes the ions
to converge into a layer at several altitude regions. The elec-
tric field effect appeared to cause a complex layer structure
(for example, double peakEs (31-1, 31-2) detected during
the ascending phase of S310-31) although the 32-2′ peak did
not agree (this difference might be due to the difference in
the observation region between S310-31 and S310-32 in the
descending phase). Because a part of the electric field in the
E-region ionosphere can be induced by the neutral wind, it
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is inferred that the induced electric field may reduce the ion
accumulation. However, the results of this analysis suggest
that the electric field intensifies the neutral wind effect and
may form the complex structure observed during the SEEK-
2 campaign.

3.4 DC electric field analysis

It is suggested that the observed electric field has an impor-
tant role in the formation of the complex structure of theEs

layers. It is possible to estimate the magnitude of the po-
larization electric field due to the plasma density gradient
and neutral wind under the tilted geomagnetic field. When a
dense plasma region exists in the homogeneous background
density, the relationship is given by the following equation,

S0 (E0 + U × B) = (S0 + S1) (E0 + E1 + U × B) , (11)

where,S0 andS1 are the conductivity tensors of the back-
ground ionization region and dense plasma region, respec-
tively. E0 andE1 are the initial and secondary electric field
vectors, respectively. Neutral wind vectors (U ) are assumed
to be horizontally homogeneous, and geomagnetic field vec-
tors (B) are also assumed to be homogeneous. The Pedersen,
Hall and parallel conductivities are functions of ion and elec-
tron plasma frequency, cyclotron frequency, ion-neutral and
electron-neutral collision frequency. Assuming that the ion
species is Fe+, and charge neutrality, ion plasma frequencies
are calculated by using the NEI observations. Collision fre-
quencies can be deduced by using the relations,

ωi ≈ 1 × 102 [Hz] , (12)

and

νen ≈ 6 × 10−9
· Nn. (13)

WhereNn is the neutral density (cm−3) given by the MSIS-
E-90 atmospheric model. We assume the ionospheric back-
ground electron density is homogeneous, with 5×103cm−3

(for the ascent period) and 3×103cm−3 (for the descent pe-
riod), based on the NEI observations for S310-31. In addi-
tion, the initial electric fieldE0 is also assumed to be zero.
Neutral wind vectors are also obtained from the observation
data by Larsen et al. (2005).

Equation (11) results are shown in Figs. 4a and b for ascent
and descent of S310-31. In these four panels, calculated elec-
tric fields are over plotted and compared with theEs obser-
vations (Pfaff et al., 2005). As demonstrated by the descent
profiles, the observed electric fields are displaced in the di-
rections of south and west by several mV/m to 5 mV/m from
the calculated values. It can be interpreted that these dis-
placements result from the addition of external electric fields
in the downleg region. Pfaff et al. (2005) also suggested
the existence of external electric fields. On the other hand,
during the ascending period, the observed eastward electric
fields were comparable with the calculated values. However,
the Es peak altitudes always appeared in the region where
the electric fields were shifted to the west and south direc-
tions. So, the electric fields directions played a role in the
formation of the multipleEs layer structure.
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Fig. 3. Ion vertical drift velocity derived from neutral wind and
electric field profiles obtained by S310-31 and S310-32 rockets.

3.5 Contributions of wind and electric field

In Figs. 5a and b,Vz profiles, which were deduced from the
wind measurement and observed electric field, are compared
with the plasma density profiles measured by the S310-31
and S310-32 rockets. As was shown in Fig. 5, variation of
vertical velocity based on the electric field is larger than that
induced by the measured wind velocity. Thus, it seems plau-
sible to assume that the contribution of the wind shear was
stable, while that of the external electric field was variable
during the SEEK-2 rocket experiment. In Figs. 5a and b, the
peak of 31-1 is interpreted as the ion accumulation region,
caused by wind, but peak 31-2 was generated by the exter-
nal electric field alone. The peaks of 31-1′ and 31-3′ were
in the accumulation region by the wind and the electric field.
The 31-2′ and 31-3 peaks did not correspond to the accu-
mulation region (31-3 appeared at a slightly higher altitude
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Fig. 4. Comparison between the observed electric fields and those
calculated using Eq. (11). In the two panels(a), the observed and
calculated profiles are similar in the eastward component though the
northward component, disagrees especially around the 106–109 km
altitude. TheEs layers (detected by S310-31 during ascent) are
in the altitude ranges where the electric fields are shifted to south-
west. During the descending phase, panel(b), the electric fields are
displaced in the direction of westward and southward, particularly
above the altitude of 103 km.

above the ion accumulation region caused by both wind and
electric field). So, we can conclude that half of theEs lay-
ers of S310-31 were formed by the neutral wind effect only,
or the combined effects of the neutral wind and the electric
field. However, the upper peaks 31-2 of S310-31 can be in-
terpreted as being only caused by the electric field.

3.6 AC electric field observation

As shown in Wakabayashi et al. (2005), intense VLF and
ELF plasma waves appeared in theEs layer during the as-
cending and descending phases of S310-32. The strong
plasma waves were detected within the time range from
114.99 s to 116.49 s, which corresponds to the altitude range
from 102.6 km to 103.3 km in the ascending phase. In the
descending phase of the rocket, the strong plasma waves
were also observed within 221.13 s to 221.72 s for the alti-
tude range from 104.6 km to 104.3 km. As shown in Fig. 6,
these altitude ranges agree well with the upper peaks of the
observedEs layers (32-2 and 32-2′ peaks) during the ascend-
ing and descending phases. Therefore, these results imply an
association between the plasma wave instability and the for-
mation of theEs layers.

4 Discussion

The observations are summarized as follows:

1. From the electron density observations, different fea-
tures among the observedEs layers in the multiple-layer

(a)

31-3

31-2

31-1

32-3

32-2

32-1

(b)

31-3'

31-2'

31-1'

32-3'

32-2'

32-1'

Fig. 5. (a) Comparison between the electron density profiles and
ion vertical velocity. Here the ion vertical velocity is deduced from
both the neutral wind (S310-32) and electric field data (S310-31).
The peak 32-1 is in the ion accumulation region by the wind and
the electric field but peaks 31-2 and 32-2 are in the region due to the
elctric field alone. The 31-3 peak is slightly above both accumula-
tion regions. The peaks 31-1 and 32-3 are also in the regions due to
netural wind accumulation.(b) The same as Fig. 5a, except for the
descending phase. The 31-1′, 31-3′, 32-1′, and 32-3′ peaks are in
the accumulation region due to neutral wind and the electric field.
The 32-2′ is with the accumulation region due to the electric fields.
The 31-2′ does not correspond to both accumulation regions.

structure were identified. The lower layers (peaks 31-1,
31-1′, 32-1 and 32-1′) tended to be relatively stable and
broad, and the upper ones (31-2, 31-2′, 32-2 and 32-2′)
tended to be unstable and narrow.

2. The lower layers corresponded to the ion accumulation
regions due to the wind shear, but the upper layers did
not. However, the upper layers also corresponded to
the accumulation region due to the ionospheric electric
field.

3. The observed DC electric fields include both external
and induced internal electric fields. The magnitudes of
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Fig. 6. The plasma wave spectra (FFT spectra) during passage through the sporadic-E. The left and right panels are in the ascending and
descending phases of the S310-32 rocket.

external fields added to the downleg region were esti-
mated to be several mV/m to 5 mV/m, directed to the
southwest. TheEs peak altitudes always existed within
the altitude regions where the electric fields were dis-
placed to the southwest direction in each profile.

4. The results of the AC electric field measurement (syn-
chronized with the TMA release) showed that the elec-
tric field fluctuations were dominant in the upper layer
Es region.

The achievement of the successive launches of two rockets
during theEs layer event with the multi-layer structure made
it possible to examine not only the shape but also the stability
of each layer. In addition, the neutral wind and electric field
measurements were simultaneously carried out to evaluate
each contribution in the complex structure of theEs layer.
We carried out data analysis for the relationship between the
Es layer structure, the neutral wind, and the electric field of
external origin. Pfaff et al. (2005) also pointed out the exis-
tence of northwest external electric fields, consistent with our
results. Moreover, AC electric field measurement revealed a
difference in the electrodynamic character between the up-
per and lower peaks. The TMA release experiment tends to
interfere with other instruments due to the active chemical
reaction. Thus, it is difficult to measure electric fields simul-
taneously with the TMA release. However, in this campaign
we tried to measure the AC electric fields which were able

to reveal electric field effects at the same time as the wind
measurements.

Our analysis suggests that the generation mechanism of
the upper layer was caused by the external electric field. The
electric fields directions probably also contribute to theEs

formation, as shown by the ascending phase measurements.
It has been discussed that the electric field tends to form or
stabilize theEs layers (Rees et al., 1976). This external elec-
tric field may originate inF -region disturbances.

During the SEEK-2 campaign, ionosonde observations
were carried out in Yamagawa and Okinawa. Referring to
the ionograms obtained at Okinawa, there were almost no
disturbances in theF -region ionosphere. Although there
were spread-Fsignatures observed at Yamagawa, this dis-
turbance did not map directly along the field lines to the
E-region in the SEEK-2 observation region. The magnetic
field lines on the SEEK-2 observation region maps to theF -
region altitude (about 250 km) around 29◦ N and 132.2◦ E,
which is almost half way between Okinawa and Yamagawa.
If there wereF -region disturbances around this area during
the SEEK-2 campaign, it is possible to explain the origin of
external electric fields. Perkins (1973) reported theF -region
disturbances (“Perkins Instability”) which can generate sev-
eral mV/m electric fields. It is plausible that such a plasma
instability in theF -region ionosphere generated the external
electric fields, and mapped to theE-region altitudes.

The numerical simulations of Machuga and Math-
ews (2001) described the ion trajectory in 3-D space, and
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it was suggested that the ion convergent altitude would shift
a few km higher under the horizontally homogeneous elec-
tric field. However, the homogeneous electric field was in
the direction of northwest. Although this electric field di-
rection did not correspond to the present SEEK-2 campaign,
the ion convergent altitude may have been shifted due to the
external electric field. Therefore, the lowerEs peak might
be generated by the wind shear mechanism first, then the
external electric field led to the formation of a higherEs .
The numerical simulations by Yokoyama et al. (2005; pri-
vate communications) indicated the stability of theEs layer
generated by only wind shears (although the actualEs layer
has a “sporadic” nature). The present results are in agree-
ment. Yokoyama et al. also reported that it was difficult to
generate the sharp density gradient and high density in the
Es layer due to the wind shear mechanism. It is interpreted
that such as over dense layer (densities reaching 105cm−3)
may be generated not only by ion convergence due to the
wind shear and the electric field but also to some chemical
process triggered by the external electric fields. Hence, the
actual “sporadic” nature may be explained.

The previous explanation of multi-layerEs reported by
Smith and Miller (1980) does not agree with the SEEK-2
results. The progress of this study is the indication of the dif-
ference between the lower and upperEs layers in the case of
a multi-layerEs structure. This point has not been realized
using previous observations made with sounding rocket and
ISR instruments.

5 Conclusions

For the purpose of studying the QP echo phenomena associ-
ated with theEs layers, the comprehensive experiment of the
SEEK-2 campaign was performed. The observedEs layer
had the complex structure of dual peaks. The lower layer
tended to be stable and of a slightly broad thickness, which
was due to the wind shear mechanism. On the other hand, the
upper layer was relatively unstable due to the electric field ef-
fects. This point was also suggested by the AC electric field
measurement which was simultaneous with the TMA release.

The electric fields which contributed to theEs layer for-
mation could be interpreted as external origin, and they may
be generated by anF -region disturbance. The external fields
may have existed during the whole SEEK-2 observation re-
gion, and its direction may also have contributed to the for-
mation of unstable and stable layers.
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